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Chapter 1

Historical and mathematical

background

Let G be a finite group and k be a field. We shall often have k = C, but we actually need only
that k is an algebraic closed field of characteristic 0.

Definition 1.1 (Representation). A representation of a group G over a field k is a finite dimen-
sional k-vector space V together with a group homomorphism

ρ : G −→ Autk V.

The dimension of the representation is the dimension of V .

We denote by M(n, k) the ring of n-by-n matrices with entries from k. It is known that
GL(n, k) = {A ∈M(n, k) : detA ∈ k∗} = M(n, k)∗.

The matrix ring M(0, k) has one element: (), with determinant 1. Therefore GL(0, k) =
M(0, k)∗ = {()} and the unique representation of dimension 0 is the trivial homomorphism. We
also know that GL(1, k) = k∗. This is an abelian group. If the dimension is greater than 1, then
for every field k the group GL(n, k) is non-abelian.

Definition 1.2 (Equivalent representations). Two representations ρ, ρ′ : G −→ GL(n, k) are
equivalent representations if there exists an A ∈ GL(n, k) such that for all σ ∈ G

ρ′(σ) = Aρ(σ)A−1.

Later we shall give another definition of representation: A representation of a group G on a
field k is a k[G]-module of finite k-dimension.

Two pioneers of representation theory are Dedekind (1831–1916) and Frobenius (1849–1917).
Dedekind was interested in studying normal bases of number fields and that led him to introduce
the concept of group determinant.

Definition 1.3 (Group determinant). Let G be a finite group. The group determinant of G is

det [Xστ−1 ]σ,τ∈G ∈ C[Xσ : σ ∈ G].

Examples. If G is a group order 2, then the group determinant factors in the following way:
∣
∣
∣
∣

X1 X2

X2 X1

∣
∣
∣
∣
= X2

1 −X
2
2 = (X1 +X2)(X1 −X2).

1
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If G is a group of order 3, then we have
∣
∣
∣
∣
∣
∣

X1 X3 X2

X2 X1 X3

X3 X2 X1

∣
∣
∣
∣
∣
∣

= (X1 +X2 +X3)(X1 + ζX2 + ζ2X3)(X1 + ζ2X2 + ζX3),

where ζ = e
2πi
3 is a primitive third root of unity.

Dedekind found the following expression for the group determinant of a finite abelian group
G:

det [Xστ−1 ]σ,τ∈G =
∏

ρ

∑

σ∈G

ρ(σ)Xσ,

where ρ runs over all group homomorphisms ρ : G −→ GL(1,C) = C∗. The number of these
group homomorphisms is equal to the order of G.

If G is a finite group, then we call Hom(G,C∗) = Ĝ the dual group of G. If G is an abelian

finite group, then #Ĝ = #G. There exists a canonical isomorphism between
ˆ̂
G and G.

In a letter to Frobenius, dated 25 March 1896, Dedekind posed the problem of factoring the
group determinant of a finite non-abelian group into irreducible factors. Frobenius solved the
problem and published the solution in the same year.

The group determinant of the group S3 is the product of two irreducible polynomials of degree
1 and the square of an irreducible polynomial of degree 2. What is the general theory?

Let G be a finite group of order n. Then

det [Xστ−1 ]σ,τ∈G =

t∏

i=1

Pni

i ,

with Pi ∈ C[Xσ : σ ∈ G] irreducible, homogeneous polynomials of degree ni and pairwise distinct.
By comparing degrees, we get

n2
1 + n2

2 + n2
3 + . . .+ n2

t = n.

It is also true that t is equal to the number of conjugacy classes of G. Moreover, for all i = 1, . . . , t
we have that ni is a divisor of n and the number of linear factors in the group determinant is
equal to the index of the commutator subgroup of G in G. We shall denote the commutator
subgroup of G by [G,G].
Examples. Let Q be the quaternion group. It has order 8 and we denote its elements
by ±1,±i,±j,±k. There are 5 conjugacy classes: {1}, {−1}, {±i}, {±j}, and {±k}. Since
the commutator subgroup [Q,Q] is equal to 〈−1〉, the number of linear factors in the group
determinant is 8/2 = 4. Hence, 8 = 12 + 12 + 12 + 12 + 22.

If G is S4, then n = 24 and t = 5. Moreover, the commutator subgroup is A4. Hence,
24 = 12 + 12 + 22 + 32 + 32.

In the general case the solution by Frobenius is

det [Xστ−1 ]σ,τ∈G =
∏

ρ

(

det

(
∑

σ∈G

ρ(σ)Xσ

))dim ρ

,

where ρ runs over all irreducible representations of G up to equivalence. We shall give later the
definition of irreducible representation.

Note that ρ(σ) is an element of GL(n,C). Therefore
∑

σ∈G ρ(σ)Xσ is an element of
M(dim ρ,C[Xσ : σ ∈ G]).



Chapter 2

Solvable groups

Now we are going to formulate a theorem of group theory which can be proven by using repre-
sentation theory. Before stating it, we need some definitions and theorems.

Definition 2.1 (Solvable group). A group G is solvable if there exists a chain of subgroups

{id} = G0 ⊂ G1 ⊂ . . . ⊂ Gt−1 ⊂ Gt = G

with t ∈ Z≥0 such that for every 0 < i ≤ t the group Gi−1 is normal in Gi and Gi/Gi−1 is
abelian.

The condition that Gi−1 is normal in Gi and Gi/Gi−1 is abelian is equivalent to the condition
that Gi ⊃ Gi−1 ⊃ [Gi, Gi].
Example. The permutation group S4 is solvable: {id} ⊂ V4 ⊂ A4 ⊂ S4. Note that this chain
is not unique, because it can be refined to {id} ⊂ 〈(1 2)(3 4)〉 ⊂ V4 ⊂ A4 ⊂ S4.

Using the following procedure we can determine whether a group G is solvable and, if so, we
can simultaneously construct a chain of subgroups. A group G is solvable if and only if the chain

G = Gt ⊃ Gt−1 = [Gt, Gt] ⊃ Gt−2 = [Gt−1, Gt−1] ⊃ . . .

reaches the trivial group in a finite number of steps. In this way we always find a chain of
subgroups such that for every 0 < i ≤ t the group Gi−1 is normal in G and not only in Gi.
Example. The permutation group S5 is not solvable: S5 ⊃ [S5, S5] = A5 = [A5, A5].

When G is a finite solvable group, we can always construct a chain such that the quotients
Gi/Gi−1 are not only abelian, but even cyclic. In some cases we do not have any more that all
subgroups of the chain are normal in G. Actually, the existence of a chain

G = Gt ⊃ Gt−1 ⊃ . . . ⊃ G1 ⊃ G0 = {id}

such that for every 0 < i ≤ t the quotients Gi/Gi−1 are cyclic and the subgroup Gi−1 is normal
in G is a stronger statement than requiring G to be solvable.

We can immediately see that some groups are solvable.

Definition 2.2 (p-group). Let p be a prime number. A torsion group G is a p-group if each
element of G has a power of p as its order.

Theorem 2.3. Let p be a prime number and G be a finite p-group. Then G is solvable.
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Definition 2.4 (p-Sylow subgroup). Let p be a prime number and G be a finite group. Let
pk be the largest power of p dividing the order of G. Any subgroup of G of order pk is called
p-Sylow subgroup.

Theorem 2.5. Let p be a prime number and G be a finite group. Then G contains a p-Sylow
subgroup and all p-Sylow subgroups of G are conjugate.

Theorem 2.6 (Burnside (1904)). Let G be a group of order paqb where p and q are prime
numbers and a, b ∈ Z≥0. Then G is solvable.

We shall use representation theory in order to prove this theorem. There is also a proof which
does not use it.

A strong result is the following theorem, which is known as Odd Order Theorem. We shall
not give a proof, because is too long to be presented in this course.

Theorem 2.7 (Feit, Thompson (1963)). Every finite group of odd order is solvable.

As a reference you can see the book [1] by Bender and Glauberman and the book [2] by
Peterfalvi.

A concept related to solvable groups is the notion of simple group.

Definition 2.8 (Simple group). A simple group is a nontrivial group whose normal subgroups
are only the trivial group and the group itself.

For example, the alternating groups An for n ≥ 5 are simple. All finite simple groups have
been classified and the proof consists of several thousands of pages written by about one hundred
mathematicians.

If a group G is not simple, then it has a normal subgroup N with N 6= G and N 6= {id}. A
strategy which can be used to prove that G is solvable is an argument by induction based on the
assumption that both N and G/N are solvable.

The following theorem gives an explicit way to find a nontrivial normal proper subgroup for
some groups. It is known only one proof of this theorem and it uses representation theory.

Theorem 2.9. Let G be a finite group and let C ⊂ G be a conjugacy class such that #C = pn

with p prime and n ≥ 1. Then the subgroup of G generated by {στ−1 : σ, τ ∈ C} is a normal
subgroup of G different from {id} and G.

Example. Let S3 be the symmetric group on the set {1, 2, 3}, that is

S3 = {id, (1 2), (1 3), (2 3), (1 2 3), (1 3 2)}.

The conjugacy classes of S3 are C1 = {id}, C2 = {(1 2), (1 3), (2 3)} and C3 = {(1 2 3), (1 3 2)}.
Both C2 and C3 have prime power order and thus they meet the conditions of the theorem. Both
conjugacy classes give the same normal subgroup, namely {id, (1 2 3), (1 3 2)}. This is A3, the
only normal subgroup of S3 besides {id} and S3.

We shall use Theorem 2.9 in the proof of Burnside’s theorem. In order to prove Burnside’s
theorem we need some notions of representation theory.

Theorem 2.10. Let G be a group and N ⊳G be a normal subgroup. Then G is solvable if and
only if both N and G/N are solvable.

Definition 2.11 (Center). Let G be a group. The center Z(G) of G is the set of elements of G
which commute with every element of G.
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Note that Z(G) is a normal subgroup of G and any subgroup of Z(G) is normal in G.

Theorem 2.12. Let G be a nontrivial group of prime power order. Then #Z(G) > 1.

Theorem 2.13. Every group of prime power order is solvable.

Note that this follows by induction on the order of the group from the previous facts. Indeed,
Z(G) is a normal subgroup ofG different from {id}. We may suppose that Z(G) 6= G, otherwiseG
is abelian and hence solvable. By inductive hypothesis Z(G) andG/Z(G) are solvable. Therefore,
G is also solvable.

Definition 2.14 (Normalizer). Let G be a group and τ be an element of G. The normalizer
NG(τ) of τ in G is the set of elements of G which commute with τ .

Let C = {στσ−1 : σ ∈ G} be the conjugacy class of τ . Then #C = [G : NG(τ)], the index of
NG(τ) in G.

Proof of Burnside’s theorem. Let G be a finite group of order paqb with p, q prime numbers and
a, b ∈ Z≥0. We shall use induction on the order of G.

If G has prime power order, then it is solvable by Theorem 2.13. Therefore, we may assume
that #G = paqb with p 6= q, a ≥ 1, b ≥ 1. We want to construct a normal subgroup N ⊳G such
that N 6= {id}, N 6= G.

Let H ⊂ G be a q-Sylow subgroup. Hence, #H = qb. By Theorem 2.13 we can choose
τ ∈ Z(H), τ 6= id. The element τ commutes with all elements of H and thus H ⊂ NG(τ). This
implies that [G : NG(τ)] | [G : H ] = pa and we get [G : NG(τ)] = pn with 0 ≤ n ≤ a.

If n = 0, then NG(τ) = G, that is for all σ ∈ G we have στσ−1 = τ . Hence, 〈τ〉 is a normal
nontrivial subgroup of G. We take N = 〈τ〉, because N 6= {id}. Either N = G, that is G is
cyclic and therefore solvable, or N 6= G and we are done.

Now suppose n ≥ 1 and let C be conjugacy class of τ . Then #C = [G : NG(τ)] = pn and
Theorem 2.9 gives the requested N .

Both groups N and G/N have order less than #G. Since the product of their orders is paqb,
then both #N and #G/N are products of two prime powers. By inductive hypothesis N and
G/N are solvable. Hence, G is also solvable.

The following theorem gives a way to construct a normal subgroup.

Theorem 2.15 (Frobenius (1901)). Let G be a group which acts transitively on a finite set X
and for all σ ∈ G denote by nσ the cardinality of the set {x ∈ X : σx = x}. If for all σ ∈ G\{1} it
holds that nσ ≤ 1, then {1}∪{σ ∈ G : nσ = 0} is a normal subgroup of G which acts transitively
on X.

Examples. Let G = S3 = {id, (1 2 3), (1 3 2), (1 2), (1 3), (2 3)} acts on the set X = {1, 2, 3}.
We see that nσ = 3 if σ = id, nσ = 0 if σ is a 3-cycle, and nσ = 1 if σ is a 2-cycle. Theorem 2.15
states that {id, (1 2 3), (1 3 2)} is a normal subgroup of S3. This group is again A3.

Let D5 be the dihedral group acting on the five vertices of a regular pentagon. Thus nσ = 5 if
σ is the identity, nσ = 0 if σ is a nontrivial rotation, and nσ = 1 if σ is a reflection. By Theorem
2.15 we get that the group of rotations is a normal subgroup of D5.

Let X = k be a finite field of order q. We define the group G by

G = {σ : k → k : ∃aσ ∈ k
∗, bσ ∈ k : ∀x ∈ k : σ(x) = aσx+ bσ}.

The order of G is q(q − 1). An element σ ∈ G fixes exactly one point of X if the associated aσ
is equal to 1, namely the point x = −bσ(aσ − 1)−1. If aσ = 1 and bσ = 0, then σ is the identity
and fixes all points of X . If aσ = 1 and bσ 6= 0, then σ fixes no points. Theorem 2.15 says that
the set {σ : σ ∈ G, aσ = 1} is a normal subgroup of G.



Chapter 3

Modules

We only consider rings with identity.

Definition 3.1 (Left R-module). Let R be a ring. A left R-module is an abelian group M with
a map R×M →M , (r,m) 7→ rm such that for all r, s ∈ R and m,n ∈M

r(m + n) = rm + rn,

(r + s)m = rm + sm,

(rs)m = r(sm),

1m = m.

It is not strictly necessary to require that the underlying group is abelian, because it follows
from the properties of the map in the definition. The relations r0 = 0, 0m = 0 and −1m = −m
can be also deduced from some properties.

An equivalent definition is the following. Let R be a ring. A left R-module is an abelian group
M together with a ring homomorphism ϕ : R → End(M). From this definition we immediately
see that, given two rings R1 and R2, a ring homomorphism f : R1 → R2, and an R2-module M
with ϕ : R2 → End(M), the group M with the ring homomorphism ϕ ◦ f : R1 → End(M) is an
R1-module.

When we consider the underlying abelian group as a multiplicative group, we write the
element rm as mr or rm. Note that in this case the property (rs)m = r(sm) has the anti-
intuitive form m(rs) = (ms)r.

Besides left R-modules, which we shall shortly call R-modules, there are also right R-modules.
The ring Ropp has the same underlying additive group of R, whereas the multiplication is

given by r ·opp s = s ·r. An antihomomorphism between two rings is a ring homomorphism where
f(rs) = f(s)f(r) instead of f(rs) = f(r)f(s).

Definition 3.2 (Right R-module). Let R be a ring. A right R-module is an abelian group M
together with a ring homomorphism ϕ : Ropp → End(M) or, equivalently, an antihomomorphism
ϕ : R→ End(M).

Definition 3.3 (Bimodule). Let R and S be rings. An R-S-bimodule is an abelian group M
which is a left R-module and a right S-module such that for all r ∈ R, s ∈ S, m ∈ M it holds
that r(ms) = (rm)s.

Homomorphisms of R-modules are defined as follows.
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Definition 3.4 (R-homomorphism). Let R be a ring and let M and N be two R-modules. An
R-homomorphism or R-linear map from M to N is a group homomorphism f : M → N such
that for all r ∈ R, x ∈M it holds that f(rx) = rf(x).

Definition 3.5 (Isomorphism). Let f : M → N be an R-linear map. The map f is an iso-
morphism of R-modules if there exists an R-linear map g : N → M such that f ◦ g = idN and
g ◦ f = idM .

Similarly to the case of rings, we may define the following sets.
HomR(M,N) = {R-linear maps from M to N}. Homomorphisms form an additive group with
pointwise addition.
EndR(M) = HomR(M,M). The endomorphisms form a ring with addition given by pointwise
addition and multiplication given by function composition.
AutR(M) = EndR(M)∗ = {R-linear isomorphism from M to M}. The automorphisms form a
multiplicative group with multiplication given by function composition.
Examples. Every abelian group M is a Z-module. Choose ϕ as follows.

ϕ : Z −→ End(M).

x 7−→
(
y 7→ y + . . .+ y

︸ ︷︷ ︸

x times

)

A left ideal of a ring R is an R-module.

Definition 3.6 (Submodule). Let R be a ring and M be an R-module. A submodule or R-
submodule of M is a subgroup N of M such that for all r ∈ R, x ∈ N it holds that rx ∈ N .

Let R be a ring and let L and M be R-modules. If N is an R-submodule of M , then the
quotient M/N is an R-module by taking r(x + N) = (rx) + N as multiplication. We leave to
the reader the verification that the multiplication is well-defined.

Theorem 3.7 (Isomorphism theorem). Let f : L → M be an R-linear map. Then ker f is an
R-submodule of L and the image fL is an R-submodule of M . The induced map L/ ker f → fL
is an isomorphism of R-modules.

Theorem 3.8 (Homomorphism theorem). Let f : L → M be an R-linear map and let N ⊂ L
be an R-module with N ⊂ ker f . Then there exists a unique R-linear map g : L/N → M such
that the following diagram commutes.

L M

L/N

f

π g

Here π is the canonical map from L to L/N .

Theorem 3.9. Let K and N be R-submodules of M . Then both K ∩N and K +N = {x+ y :
x ∈ K, y ∈ N} are R-submodules of M and the following map is an R-linear isomorphism.

K/(K ∩N)
∼
−→ (K +N)/N

x+ (K ∩N) 7−→ x+N.

In order to show how useful modules are, we shall prove the Jordan normal form of matrices
over C by using modules. Firstly, we give two definitions and a theorem.
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Let R be a principal ideal domain (PID) and let M be an R-module. For every x ∈ M we
have a homomorphism gx : R → Rx ⊂ M given by r 7→ rx. The kernel of gx is the annihilator
of x and it is denoted by Ann(x). It is an ideal of R. Since R is a principal ideal domain, there
exists y ∈ R such that Ann(x) = (y).

Definition 3.10 (Order). Let R a principal ideal domain and let M be an R-module. An order
of an element x ∈M is a generator of Ann(x).

Note that all orders of an element are equal up to multiplication by units of R.

Definition 3.11 (Torsion element). Let R be a principal ideal domain and let M be an R-
module. An element x ∈M is a torsion element if any order of x is not zero, that is Ann(x) 6= {0}.
Differently stated, an element x ∈ M is a torsion element if there exists r ∈ R \ {0} such that
rx = 0.

If R is a domain (6= 0), then the set of torsion elements of M forms a submodule T (M) ⊆M .

Theorem 3.12 (Structure theorem). Let R be a principal ideal domain and let M be a finitely
generated R-module. Then there exist a natural number r and an R-linear isomorphism

M ∼=R T (M)⊕Rr.

The integer r is called the rank of M . The module T (M) is isomorphic to
⊕

p
M(p), where p

runs over all prime ideals of R and all but finitely many M(p are 0. Here M(p) is the submodule
of M of elements whose order is a power of p and

M(p) ∼=R R/p
k1 ⊕ . . .⊕R/pkm

with m ≥ 0, k1 ≥ k2 ≥ . . . ≥ km ≥ 0 ∈ Z uniquely determined by p.

We shall use the structure theorem for finitely generated modules over a principal ideal
domain in order to prove the existence of the Jordan normal form.

Let V be a finite-dimensional C-vector space and let A ∈ End(V ).
The vector space V is a C[X ]-module. Firstly, V is a C-vector space and scalar multiplication

is a homomorphism C → End(V ). Then we extend scalar multiplication to a homomorphism
ϕ : C[X ]→ End(V ) by setting ϕ(X) = A. The multiplication of an element x ∈ V by

∑
aiX

i ∈
C[X ] is given by (

∑
aiX

i)x =
∑
aiA

i(x).
We prove that V is a torsion module. Indeed, if the rank of V was greater than 0, then by

Theorem 3.12 the vector space V would have infinite dimension over C, because C[X ] has infinite
dimension over C.

Since prime ideals of C[X ] have the form (X − λ) for some λ ∈ C, Theorem 3.12 states that
V is isomorphic to a direct sum

⊕
Vi, where every Vi is isomorphic to C[X ]/(X−λi)

ni for some
λi ∈ C and ni ∈ Z>0. The elements λi do not have to be necessarily pairwise distinct.

Choose as a basis of Vi the elements (X−λi)
ni−1, (X−λi)

ni−2, . . . , (X−λi), 1. Multiplication
of elements of the basis by (X−λi) gives (X−λi) for 1, (X−λi)

2 for (X−λi), . . ., (X−λi)
ni−1

for (X − λi)
ni−2 and 0 for (X − λi)

ni−1. Hence, we get the following matrices with respect to
the chosen basis for A− λI and A restricted to Vi:
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A− λI =










0 1

0
. . .

. . . 1

0










, A =










λ 1

λ
. . .

. . . 1

λ










.

�



Chapter 4

Modules and representation

theory

We shall prove that a representation of G on k is a k[G]-module.

Definition 4.1 (Group ring). Let R be a ring and G be a group. The group ring R[G] of G
over R is

R[G] =
{∑

σ∈G

aσσ : aσ ∈ R, aσ = 0 for all but finitely many σ ∈ G
}

.

Two elements
∑

σ aσσ and
∑

σ bσσ are equal if for all σ ∈ G : aσ = bσ.
The group ring R[G] is a ring with the following addition and multiplication:

(∑

σ

aσσ
)

+
(∑

σ

bσσ
)

=
(∑

σ

(aσ + bσ)σ
)

,

(∑

σ

aσσ
)(∑

σ

bσσ
)

=
(∑

ρ∈G

∑

σ,τ∈G,στ=ρ

(aσbτ )ρ
)

=
(∑

ρ∈G

∑

σ∈G

(aσbσ−1ρ)ρ
)

.

Note that R is contained in R[G] as a subring (x ∈ k 7→ x · 1 ∈ R[G]) and G in R[G]∗ as a
subgroup (g ∈ G 7→ 1 · g ∈ R[G]) if k 6= {0}.

If we multiply two elements (. . . + aσ + . . .) and (. . . + bτ + . . .) of R[G], then (aσ)(bτ) =
(ab)(στ), and therefore σb = bσ.

The following lemma draws the connection between k[G]-modules and representations of G
on k.

Lemma 4.2. Let R be a ring, G be a group, and R[G] be the group ring of G over R. Then an
R[G]-module is the same as an R-module V with a group homomorphism G→ Autk(V ).

Example. Let k be a field and V be the k-module kn. Then Endk(V ) = M(n, k) and Autk(V ) =
GL(n, k). A k[G]-module structure on V is now given by a homomorphism G→ GL(n, k).

Proof of Lemma 4.2. We take a k-module V and a group homomorphism ρ : G → Autk(V ).
Now we give to V a k[G]-module structure by

k[G]× V −→ V

(<∞∑

σ∈G

aσσ
)

v 7−→
<∞∑

σ∈G

aσρ(σ)(v).

10
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You can see that it satisfies the axioms of a module.
Conversely, consider a k[G]-module W . We make a k-module V by restricting the multipli-

cation to elements in k. Finally, define ρ : G→ Autk(V ) by ρ(σ) = (v ∈ V 7→ σv).

Now we want to look at the structure of k[G] for two small groups G.
If G = {1}, then k[G] = k.
Let G = 〈σ〉 with σ2 = 1 be a group of order 2 and let k be a ring. Consider the following

ring homomorphism f :

f : k[G] −→ k × k

a+ bσ 7→ (a+ b, a− b).

The kernel of f is {a+ bσ ∈ k[G] : a = b = −b}. If a+ bσ is an element in the kernel, then
2b = 0. Now suppose that 2 = 1 + 1 ∈ k∗. It follows that b = 2−12b = 0, the kernel of f is {0},
and hence f is injective.

The ring homomorphism f is surjective if and only if (1, 0) is an element in the image of
f . Indeed, (1, 1) is f(1) and (1, 1) and (1, 0) generate together k × k. By definition (1, 0) is an
element in the image of f if and only if there exist a, b ∈ k such that a + b = 1 and a − b = 0.
Thus there exists a ∈ k such that 2a = 1. This proves that f is surjective if and only if 2 ∈ k∗.

It follows that f is a ring isomorphism if and only if 2 ∈ k∗.
Example. Consider Z[G]. Let f(1) = (1, 1) and f(σ) = (1,−1). This implies that (c, d) ∈ Z×Z

is in the image of f if and only if c ≡ d(mod 2).
Let R1 and R2 be rings, and let R = R1 × R2. Let M1 be an R1-module, and M2 an

R2-module. Then M = M1 ×M2 is an R-module via (r1, r2)(m1,m2) = (r1m1, r2m2).
Conversely, every R-module N can be obtained in this (unique) way. Define M1 = (1, 0)N =

{(1, 0)x : x ∈ N}. This is an R-submodule of N and it is annihilated by {0} × R2 because
(0, b)(1, 0)x = (0, 0)x = 0. The kernel of the map ϕ : R → End(M1) obtained by resticting
the image of the map R → End(N) to End(M1) contains {0} ×R2. The map ϕ induces a map
from R/({0} × R2) ∼= R1 to End(M1). This makes M1 into an R1-module. Analogously, we
can define the R2-module M2 = (0, 1)N . We leave to the reader the verification that the map
M1 ×M2 → N given by (u, v) 7→ u+ v is an R-linear isomorphism.

If L1 is an R1-module, L2 is an R2-module, and L = L1 × L2, then there is a map

HomR1
(M1, L1)×HomR2

(M2, L2) −→ HomR(M,L)

(f1, f2) 7−→
(
f : (x, y) 7→ (f1(x), f2(y))

)
.

You can check that it is bijective.
It is straightforward to generalize this result to finite products R =

∏n
i=1 Ri of rings.

Now let k be a field of characteristic different from 2 and G = 〈σ〉 be a group of order 2.
Then we have a ring isomorphism k[G] ∼= k × k given by σ 7→ (1,−1).

Now suppose that V is a k[G]-module, that is a k-vector space V with a k-linear action of
G on V . Since every k[G]-module V is the product of a k-module V1 on which σ acts as the
identity map and a k-module V2 on which σ acts as −1, we have the k[G]-linear isomorphism
V ∼=k[G] V1 × V2, where σ(v1, v2) = (v1,−v2).

When we have a finite-dimensional representation ρ : G → GL(n, k) of G over k, we can
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therefore choose a basis of V in such a way that we get

ρ(σ) =













1 0
. . . 0

0 1
−1 0

0
. . .

0 −1













.

More generally, if G = 〈σ〉 is a finite cyclic group with σm = 1, where m 6= 0 in k and Xm−1
has m zeros 1, ζ, ζ2, . . . , ζm−1 in k, then we have the following isomorphism:

k[G]
∼
−→ k × k × k × . . .× k

σ 7−→ (1, ζ, ζ2, . . . , ζm−1).

After a change of basis we can write ρ(σ) as

ρ(σ) =























1 0
. . . 0

0 1
ζ 0

. . .

0 ζ
. . .

ζm−1 0

0
. . .

0 ζm−1























.



Chapter 5

Exact sequences

Definition 5.1. Let R be a ring and let K, L and M be R-modules. A sequence

K
f
−→ L

g
−→M

is exact (at L) if ker g = im f .

Note that gf = 0.
A sequence K → L→M → N is exact if the sequence is exact at L and at M . In general a

sequence is exact if it is exact at every point where it is defined.

Examples. 0
f
−→ L

g
−→M is exact if and only if ker g = 0 if and only if g is injective.

K
f
−→ L

g
−→ 0 is exact if and only if im f = L if and only if f is surjective.

K
f
−→ 0

g
−→M is always exact.

0
f
−→ L

g
−→ 0 is exact if and only if L = 0.

0 −→ L
f
−→M −→ 0 is exact if and only if f is an isomorphism.

0 −→ K
f
−→ L

g
−→M −→ 0 is exact if and only if K can be seen (via f) as a submodule of

L and M can be identified (via g) with L/K.

0 −→ K
f
−→ L

g
−→M

h
−→ N −→ 0 is exact if and only if K is isomorphic to ker g and N is

isomorphic to coker g. (coker g = M/(im g) is the cokernel of g.)

0 −→ K
i
−→ K ⊕M

p
−→ M −→ 0 is exact.

x 7−→ (x, 0)
(x, y) 7−→ y

Definition 5.2. A short exact sequence 0 → K → L → M → 0 splits if there exists a homo-
morphism h : L→ K ⊕M such that the following diagram commutes.

0 −→ K −→ L −→ M −→ 0


yidK



yh



yidM

0 −→ K
i
−→ K ⊕M

p
−→ M −→ 0.

Lemma 5.3 (Snake Lemma). Consider the following commutative diagram where the rows are
exact:

K1 −→ L1 −→ M1 −→ 0


yf



yg



yh

0 −→ K2 −→ L2 −→ M2.

13
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Then there is an exact sequence ker f → ker g → kerh→ coker f → coker g → cokerh.
Furthermore, if the morphism K1 → L1 is injective, then so is the morphism ker f → ker g,

and if the morphism L2 →M2 is sujective, then so is the morphism coker g → cokerh.

Let I be an index set, R be a ring and Mi an R-module for every i ∈ I.
The direct sum is

⊕

i∈I

Mi = {(xi)i∈I : xi ∈Mi for all i ∈ I, {i ∈ I : xi 6= 0} is finite}

and the direct product is

∏

i∈I

Mi = {(xi)i∈I : xi ∈Mi for all i ∈ I}.

The direct sum is an R-submodule of the direct product. Note that
⊕

i∈IMi =
∏

i∈IMi if
and only if Mi = 0 for all but finitely many i ∈ I.

A direct sum
⊕

i∈IM is also written as M (I) and the direct product
∏

i∈IM as M I .
We shall introduce some properties of modules.

Definition 5.4. An R-module F is free is there is a set I such that R(I) ∼= F .

For every j ∈ I we call ej the image of (. . . , 0, 1, 0, . . .) ∈ R(I) under this isomorphism, where
the 1 is at the j position. The elements ej form a basis of F over R. This means that for every
x ∈ F there is a unique sequence of elements (rj)j∈I with rj ∈ R and rj = 0 for all but finitely
many j ∈ I such that x =

∑

i∈I rjej.
Hence F is a free R-module if and only if F has an R-basis.
If R is a division ring, then every R-module is free. (A division ring is a ring where 1 6= 0

and every nonzero element has a left multiplicative inverse).

Lemma 5.5. Let 0 → K → L → F → 0 be a short exact sequence and let F be a free module.
Then the sequence splits.

Definition 5.6. Projective module Let R be a ring. An R-module M is a projective R-module
if every short exact sequence 0→ K → L→M → 0 of R-modules splits.

Definition 5.7. Injective module Let R be a ring. An R-module M is an injective R-module if
every short exact sequence 0→M → N → P → 0 of R-modules splits.

Definition 5.8. Semisimple module Let R be a ring. An R-module M is a semisimple R-module
if every short exact sequence 0→ L→M → N → 0 of R-modules splits.

Example. Let R = Z. An R-module M is projective if and only if M is free. An R-module M
is injective if and only if M is divisible. An R-module M is semisimple if and only if the order
of every x ∈M is finite and square-free.

Definition 5.9. Finitely generated module An R-module M is a finitely generated R-module if
there exist n ∈ Z≥0 and a surjective R-linear map Rn →M .

An equivalent definition is that an R-module M is finitely generated if there are elements
a1, . . . , an such that for all x ∈M there exist r1, . . . rn ∈ R : x = r1a1 + . . .+ rnan. The elements
r1, . . . , rn are not necessarily unique. If they are unique for all x in M , then M is free.



Chapter 6

Homomorphisms and tensors

Let R be a ring and M and N two R-modules.
The R-linear maps from M to N form an abelian group HomR(M,N) via (f1 + f2)(x) =

f1(x) + f2(x) ∈ N .
In general HomR(M,N) is not an R-module. Indeed, if f is an R-linear map from M to N ,

then rf is not necessarily R-linear. We have (rf)(sx) = r(f(sx)) = rsf(x), but this is not always
equal to s(rf(x)) = srf(x). However, if R is commutative, then HomR(M,N) is an R-module.

Let R, S and T be rings, M be an R-S-bimodule and N be an R-T -bimodule. Then

RHom(M,N) is an S-T -bimodule via (sf)(x) = f(xs) and (ft)(x) = f(x)t. We write R as
subscript on the left, because we want to remark that M and N are left R-modules.

Let L be a U -S-bimodule. Similarly, HomS(M,L) is a U -R-bimodule.
Let f : N → N ′ be an R-T -linear map. It induces an S-T -linear map f∗ given by:

RHom(M,N)
f∗
−→ RHom(M,N ′)

(M
g
→ N) 7−→ (M

fg
→ N ′).

Note that fg is the composition of R-linear maps, thus it is also R-linear. The map f∗ is called
the map induced by f or RHom(M, f).

Now let h : M →M ′ be an R-S-linear map. It induces an S-T -linear map h∗ given by:

RHom(M,N)
h∗

←− RHom(M ′, N)

(M
gh
→ N) 7−→ (M ′ g

→ N). (6.1)

We also write the map h∗ as RHom(h,N).
Using the terminology of category theory we say that RHom(M,−) is covariant and

RHom(−, N) is contravariant. The arguments can be modules or maps.
Let f and f ′ be R-T -linear maps such that

N
f
−→ N ′ f ′

−→ N ′′.

Then

R hom(M,N)
f∗
−→ RHom(M,N ′)

f ′
∗−→ RHom(M,N ′′)

and f ′
∗f∗ = (f ′f)∗.

15
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Let h and h′ be R-S-linear maps such that

M
h
−→M ′ h′

−→M ′′.

Then

RHom(M,N)
h∗

←− RHom(M ′, N)
h′∗

←− RHom(M ′′, N)

and h∗h′∗ = (h′h)∗.
Thus, RHom(M,N) is ‘contra’ in M an ‘co’ in N and therefore it is an S-T -bimodule.

Similarly, SHom(M,L) is ‘contra’ in M and ‘co’ in L and therefore it is a U -R-bimodule.
Let R be a ring and let M be an R-module. We will show that “RHom(M,−) transforms

kernels into kernels”. More precisely, we have the following lemma.

Lemma 6.1. Let N and N ′ be R-modules and let the map f : N → N ′ be R-linear. Then

RHom(M, ker f) = ker(RHom(M, f)) = ker f∗.

Proof. Every R-linear homomorphism g from M to ker f is also an R-linear homomorphism from
M to N , because ker f ⊂ N . We have the following commutative diagram.

ker f N N ′

M

f

g g fg

We see that g(M) ⊂ ker f ⇔ fg = 0⇔ g ∈ ker f∗. Hence RHom(M, ker f) = ker f∗.

We say that RHom(M,−) is left exact, because if the sequence 0 −→ N ′′′ f ′′

−→ N
f
−→ N ′

is exact then the sequence 0 −→ RHom(M,N ′′′)
f ′′
∗−→ RHom(M,N)

f∗
−→ RHom(M,N ′′) is also

exact.
Furthermore, we have

RHom(M,N ′′′ ⊕N ′) ∼= RHom(M,N ′′′)⊕ RHom(M,N ′).

The analogous statement is true for RHom(−, N).
Since R itself is an R-R-bimodule, both R and N are left R-module. The map

RHom(R,N) R
∼= N

f 7−→ f(1)

is an R-isomorphism, because the map N → RHom(R,N) given by x 7→ (r 7→ rx) is the inverse
map.

Let R be a ring and let N be an R-module. We will show that “RHom(−, N) transforms
cokernels into cokernels”. More precisely, the following lemma holds.

Lemma 6.2. Let M and M ′ be R-modules and let the map h : M → M ′ be R-linear. Then

RHom(cokerh,N) = ker(RHom(h,N)) = kerh∗.

Proof. Since cokerh is isomorphic to M ′/h(M), the projection map is a surjective map from M ′

to cokerh. Now let g : M ′ → N be an R-linear homomorphism. We have the following diagram.
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M M ′ cokerh 0

M

h

g

If g factors through cokerh, that is the diagram above commutes, then there is an R-linear
homomorphism cokerh→ N associated with g. This is equivalent to the fact that gh = 0, that
is h∗(g) = 0.

We say that RHom(−, N) is left exact, because if the sequence M
h
→M ′ h

′

→M ′′ → 0 is exact

then the sequence 0→ RHom(M ′′, N)
h′∗

→ RHom(M ′, N)
h∗

→ RHom(M,N) is also exact.
If we consider two free R-module Rn and Rm, then we see that RHom(Rn, Rm) is isomorphic

to the set of m× n-matrices over R.
Let S and T be sets. The set of functions from T to S may be denoted by Map(T, S) or ST

or
∏

t∈T S. This notation suggests that (ST )U = ST×U , where U is also a set. Indeed, it is true,
because the function

Map(T × U, S) −→ Map(U,Map(T, S))

f 7−→ (u 7→ (t 7→ f(t, u)))

is bijective.
Let L, M and N be abelian group. First we give a definition.

Definition 6.3. A function f : L × M → N is bilinear if for all x, x1, x2 ∈ L and for all
y, y1, y2 ∈M it holds that f(x, y1+y2) = f(x, y1)+f(x, y2) and f(x1+x2, y) = f(x, y1)+f(x, y2).

We have

Hom(L,Hom(M,N)) ⊂Map(L,Hom(M,N)) ⊂ Map(L,Map(M,N)) = Map(L×M,N).

If f : L×M → N is a function, then the corresponding element of Map(L,Map(M,N)) belongs
to Hom(L,Hom(M,N)) if and only if f is bilinear.

We denote the set of bilinear functions from L×M to N by Bil(L×M,N). The set Bil(L×
M,N) is a group. We have

Hom(L,Hom(M,N)) = Bil(L×M,N) = Hom(L ⊗M,N).

We will soon see what L⊗M means.
Let R be a ring, L be a right R-module, M be a left R-module and N be an abelian group.

We extend the definition of bilinear functions to R-bilinear maps.

Definition 6.4. A map f : L×M → N is R-bilinear if f is a bilinear function and for all r ∈ R,
x ∈ L and y ∈M we have f(xr, y) = f(x, ry).

Note that being Z-bilinear is the same as being bilinear.
Example. The map R×R→ R given by (s, t) 7→ st is R-bilinear.

The map R×M →M given by (s,m) 7→ sm is R-bilinear.
The map L×R→ L given by (l, t) 7→ lt is R-bilinear.
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Definition 6.5 (Universal map). Let K be an abelian group. An R-bilinear map g : L×M → K
is an universal map if for every abelian group N the map

Hom(K,N) −→ BilR(L×M,N)

h 7−→ hg

is bijective. In other words, g is a universal map if for every abelian group N and for every
R-bilinear map f : L×M → N there is a unique group homomorphism h : K → N which make
the following diagram commute.

L×M K

N

g

f h

Example. All the three examples we have just seen are universal. We are going to prove it in
the case of the map R ×M → M given by (s,m) 7→ sm. We have to show that there exists a
group homomorphism h : M → N such that the following diagram commutes.

R×M M

N

g

f h

If such a homomorphism h exists, then we have f(s,m) = hg(s,m) = h(sm) = hg(1, sm) =
f(1, sm). Hence, it has to be defined by h(m) = f(1,m). The map defined in this way is a group
homomorphism. Since f(s,m) = f(1, sm) = h(sm), the map g is universal.

Theorem 6.6. Let g : L×M → K and i : L ×M → J be R-bilinear and universal maps.Then
there is a unique group isomorphism h : K

∼
→ J such that h ◦ g = i.

Proof. Because of the universality of g there exists a group homomorphism h : K → J which
make the following diagram commute.

L×M K

J

g

i h

We have to show that h is bijective. Since i is also universal, there is also a group homomor-
phism l : J → K which make the following diagram commute.
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L×M K

J

g

i l

Now we know that i = h ◦ g and g = l ◦ i. We will prove that h ◦ l = idJ and l ◦ h = idK .
Look at the following commutative diagram.

L×M K

K

g

g idK

Since l ◦ h ◦ g = l ◦ i = g, the following diagram commutes too.

L×M K

K

g

g lh

The universality of g implies that l ◦ h = idK . Similarly, we can prove that h ◦ l = idJ . Hence l
is the inverse of h and thus h is an isomorphism between K and J such that h ◦ g = i.

Definition 6.7. If there exists a universal R-bilinear map g : L×M → K, then we define

L⊗RM := K

∈ ∈

x⊗ y := g(x, y).

Note that (L⊗RM,−⊗−) is defined up to isomorphism.
If we have a pair (K, g), then it is uniquely determined up to isomorphism and we write

L⊗RM and x⊗ y instead of K and g(x, y).
Example. R⊗R R ∼= R via x⊗ y ↔ xy.

R⊗RM ∼= M via r ⊗ y ↔ ry.
L⊗R R ∼= L via x⊗ r↔ xr.
It is true that “⊗ commutes with arbitrary direct sums”. More precisely, we have the following

lemma.
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Lemma 6.8. Let (Mi)i∈I be family of R-modules and suppose that for every i ∈ I the tensor
product L⊗RMi exists. Then L⊗R (

⊕

i∈IMi) also exists and

L⊗R (
⊕

i∈I

Mi)
∼
−→

⊕

i∈I

(L⊗RMi)

x⊗ (yi)i∈I 7−→ (x⊗ yi)i∈I .

Proof. Check by yourself that the map

L× (
⊕

i∈I

Mi) −→
⊕

i∈I

(L ⊗RMi)

(x, (yi)i∈I) 7−→ (x⊗ yi)i∈I

is R-bilinear and universal.

Theorem 6.9. If L⊗RM exists, then it is generated by {x⊗ y|x ∈ L, y ∈M}.

Proof. Let H the subgroup of L⊗RM generated by {x⊗y|x ∈ L, y ∈M}. We have the following
diagram.

L×M L⊗RM

H

−⊗−

f ih

.

By definition of map we have i◦f = −⊗−. The universality of ⊗R implies that f = h◦ (−⊗−).
Therefore the diagram commutes. Now we see that i ◦ h ◦ (− ⊗ −) = − ⊗ − = id(− ⊗ −). The
unicity of h gives i ◦ h = idL⊗RM . Thus the inclusion i is surjective and H = L⊗RM .

Example. Let L be a right R-module. Then

L⊗R (Rn) ∼= (L⊗R R)n ∼= Ln

x⊗ (ri)
n
i=1 7−→ (xri)

n
i=1.

In particular:

(Rm)⊗ (Rn) ∼= Rmn

(bj)
m
j=1 ⊗ (ai)

n
i=1 7−→ (bjai)1≤i≤n,1≤j≤m.

Example. Let k be a field and let V and W be two finite-dimensional k-vector spaces. We
write V ∼= km and W ∼= kn, with bases {e1, . . . , em} and {f1, . . . , fn}, respectively. Then V ⊗kW
is a k-vector space of dimension mn with basis (ei ⊗ fj)1≤i≤m,1≤j≤n.

Let R, S, and T be rings. Let L be an S-R-bimodule and M be an R-T -bimodule. Then
L⊗RM is an S-T -bimodule via s(x⊗ y) = (sx)⊗ y and (x⊗ y)t = x⊗ (yt).

Let R be a ring, L be a right R-module and M be a left R-module. If R is commutative, then
L⊗RM is an R-module with r(x⊗ y) = (rx)⊗ y = (xr)⊗ y = x⊗ (ry) and (x⊗ y)r = x⊗ (yr).
Moreover, L⊗RM ∼= M ⊗R L.
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Let R, S, T , and U be rings and let L be an S-R-bimodule, M be an R-T -bimodule, and N
be a T -U -bimodule. Then

(L ⊗RM)⊗T NS
∼=U L⊗R (M ⊗T N).

Suppose that f : L→ L′ is a right R-linear map and g : M →M ′ is an R-linear map. Then
the following diagram commutes.

L×M L⊗RM
(x, y) x⊗ y

(f(x), g(y)) f(x)⊗ g(y)
L′ ×M ′ L′ ⊗RM

′

−⊗−

−⊗−

f ⊗ g

,

where the map L×M → L′ ⊗RM
′ is bilinear via L′ ×M ′.

For instance, if we take L′ = L and f : L → L to be the identity map idL, we have the
following map:

L⊗RM
idL⊗g
−→ L⊗RM

′

x⊗ y 7−→ x⊗ g(y).

We say that “L ⊗R − commutes with cokernels”. More precisely, we have the following
theorem.

Theorem 6.10. Let g : M →M ′ be R-linear and suppose that both L⊗RM and L⊗RM
′ exist.

Then L⊗R (coker g) and L⊗R (coker g) = coker(idL ⊗ g) also exist.
In other words, L⊗R − is right exact.

Proof. Diagram chasing! We already have all the maps where there is 0. The map with 1 can be
constructed by composition. The map with 2 can be obtained by sending (x, z̄) to x⊗ z. This
map is well-defined, because if (x, z̄) and (xz′) represent the same class then x⊗ z and x⊗ z′

are equal. Indeed, z′ − z ∈ im g, thus x⊗ (z′ − z) = 0, because the right column is exact.

L×M L⊗RM
(x, y)

(x, g(y))
L×M ′ L⊗RM

′

(x, z) (x, z) x⊗ z

(x, z + gM) = z̄ x⊗ z
L× (coker g) coker(idL ⊗ g)

0

−⊗−

0

−⊗−

0

0 idL ⊗ g0

0 0

0

1

2

.
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Let N be an abelian group and suppose we are given f : L × (coker g) → N . Then there
are bilinear maps L ×M → N and L ×M ′ → N which are obtained by composition (they are
labeled with 1 in the next diagram). The map L ×M → N we get in this way is therefore the
zero map, because the left column is exact in the second component.

From the universality of these two maps it follows that there are unique maps L⊗RM → N
and L⊗RM

′ → N (these are labeled with 2). There is also a map coker(idL ⊗ g)→ N , because
the map L⊗RM

′ → coker(idL ⊗ g) is surjective and for every element of coker(idL ⊗ g) we can
take a preimage in L⊗RM

′ and then looking at its image in N . This map is independent of the
choice of the preimage, because the rightcolumn is exact and therefore the map L⊗RM → N is
the zero map. We label this new map with 3. Since the map L⊗RM

′ → N is unique, then the
map 3 is also unique.

L×M L⊗RM

L×M ′ L⊗RM
′

L× (coker g) coker(idL ⊗ g)

0

N

f given

1 2

1 2

3

.

Furthermore, we have that L⊗R− is right exact, because if the sequenceM
g
→M ′ →M ′′ → 0

is exact then the sequence L⊗RM → L⊗RM
′ → L⊗RM

′′ → 0 is also exact.

We have not yet proven that L⊗RM exists.

Theorem 6.11. The tensor product L⊗RM exists.

Proof. Choose a subset S ⊂ M which generates M , that is a subset S such that the R-linear
map

R(S) =
⊕

s∈S

R −→ M

(rs)s∈S 7−→
∑

s∈S

rss

is surjective. Choose a subset T ⊂ ker g which generates ker g, that is the analogous map

R(T ) → ker g is surjective. Now the sequence R(T ) h
→ R(S) → M = cokerh → 0 is exact. Both

L⊗R R
(T ) and L⊗R R

(S) exist, then the previous theorem says that L⊗RM also exists.

Example. We show that V4 ⊗Z C8 = V4. The sequence Z
8
→ Z→ C8 → 0 is exact, thus

V4 ⊗ Z
idV4

⊗8
−→ V4 ⊗ Z −→ V4 ⊗ C8 −→ 0

x⊗ y 7−→ 8(x⊗ y)

is exact. We know that V4 ⊗ Z = V4 and that x⊗ y 7→ 8(x⊗ y) is the zero map. Now it follows
that V4 ⊗ C8 = V4.
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If we take the tensor product between V4 and another abelian group, we sometimes get the
trivial group: V4 ⊗ C9 = 0.

Definition 6.12 (Divisible group). An abelian group G is a divisible group if for every x ∈ G
and every n ∈ Z there exists y ∈ G such that ny = x.

Definition 6.13 (Torsion group). An abelian group G is a torsion group if for every z ∈ G there
exists m ∈ Z>0 such that mz = 0.

Theorem 6.14. Let A be a divisible group and let B be a torsion group. Then A⊗Z B = 0.

Proof. Let x ∈ A and z ∈ B be arbitrary elements. Choose m ∈ Z>0 in such a way that mz = 0.
Since A is divisible, there is y ∈ A such that x = my. Hence x ⊗ z = (my) ⊗ z = y ⊗ (mz) =
y ⊗ 0 = 0.

Example. Q⊗ C36 = 0
(Q/Z)⊗ (Q/Z) = 0
(Q/Z)⊗ (R/Z) = 0
Let L, M , and N be abelian groups. Since both Hom(L,Hom(M,N)) and Hom(L ⊗M,N)

are isomorphic to Bil(L×M,N), we have

Hom(L,Hom(M,N)) ∼= Hom(L⊗M,N).

Moreover,

SHom( L
︸︷︷︸

S−U

,RHom( M
︸︷︷︸

R−S

, N
︸︷︷︸

R−T

)

︸ ︷︷ ︸

S−T

)

︸ ︷︷ ︸

U−T

U
∼=T RHom( M

︸︷︷︸

R−S

⊗S L
︸︷︷︸

S−U
︸ ︷︷ ︸

R−U

, N
︸︷︷︸

R−T

)

︸ ︷︷ ︸

U−T

(6.2)

and
Hom( L

︸︷︷︸

U−S

,HomR( M
︸︷︷︸

S−R

, N
︸︷︷︸

T−R

)

︸ ︷︷ ︸

T−S

)

︸ ︷︷ ︸

T−U

T
∼=U HomR( L

︸︷︷︸

U−S

⊗S M
︸︷︷︸

S−R
︸ ︷︷ ︸

U−R

, N
︸︷︷︸

T−R

)

︸ ︷︷ ︸

T−U

. (6.3)

Let R be a ring, L be a right R-module and M be a left R-module. Then we have the
following commutative diagram.

L×M L⊗RM

N

(x, y) 7→ x⊗ y

If M is an R-T -bimodule and L is an S-R-bimodule, then L⊗RM is an S-T -bimodule.
Let k be a field and let V and W be finite-dimensional k-vector spaces of dimension m and

n, respectively. Then dimk(V ⊗k W ) = nm.
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Let R and R′ be two rings, R→ R′ be a ring homomorphism and M be an R-module. Then
M ′ := R′

︸︷︷︸

R′−R

⊗R M
︸︷︷︸

R−Z

is an R′-module. We say that M ′ is obtained by base extension.

If M is free over R, then M ′ is also free over R′.
Example. Consider the ring homomorphism R → C. Let V be an R-vector space which is
isomorphic to Rn as an R-module. Let (ei)

n
i=1 be a basis of V . Then C⊗RV ∼= Cn as a C-module

with basis (1⊗ ei)
n
i=1.

Lemma 6.15. Let g1 : R → R1 and g2 : R → R2 be ring homomorphisms with g1(R) ⊂ Z(R1)
and g2(R) ⊂ Z(R2). Then R1 ⊗R R2 is a ring via (s1 ⊗ s2) · (t1 ⊗ t2) = (s1t1)⊗ (s2t2).

Sketch of the proof. It is sufficient to show that there exists a map

(R1 ⊗R R2)× (R1 ⊗R R2)
×
−→ R1 ⊗R R2

such that
(s1 ⊗ s2, t1 ⊗ t2) 7−→ (s1t1)⊗ (s2t2).

Step 1. Define

R1 ×R2 ×R1 ×R2
f
−→ R1 ⊗R R2

(s1, s2, t1, t2) 7−→ (s1t1)⊗ (s2t2).

Step 2. Check that for every s1 ∈ R1 and every s2 ∈ R2 the map

f(s1, s2,−,−) : R1 ×R2 −→ R1 ⊗R R2

is R-bilinear. For every (s1, s2) ∈ R1 ×R2 the universal property gives a unique homomorphism

hs1,s2 : R1 ⊗R R2 −→ R1 ⊗R R2

t1 ⊗ t2 7−→ (s1t1)⊗ (s2t2).

Step 3. Check that the map

R1 ×R2 −→ Hom(R1 ⊗R R2, R1 ⊗R R2)

(s1, s2) 7−→ hs1,s2

is R-bilinear. Then we get

g : R1 ⊗R R2 −→ Hom(R1 ⊗R R2, R1 ⊗R R2)

s1 ⊗ s2 7−→ hs1,s2 .

Step 4. Define × by
×(a, b) = (g(a))(b).

We have the following commutative diagram of ring homomorphisms.

R1 x

x⊗ 1
R R1 ⊗R R2

1⊗ y

R2 y
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Let R, R1, and R2 be commutative rings and let R → R1 and R → R2 be ring homomor-
phisms. Let T be a ring and let R1 → T and R2 → T be ring homomorphisms. Then the
following diagram commutes.

R1

R R1 ⊗R R2 T

R2

unique

If R → R1 → T and R → R2 → T are the same ring homomorphism R → T , then it goes
through the tensor product.

Now we look at a case which is relevant to representation theory. Let k be a field and let l
be an extension field of k. We take the group ring k[G] as R1 and l as R2. Then the following
diagram commutes.

k[G]

k l[G] = l ⊗k k[G]

l



Chapter 7

Jordan-Hölder Theorem and

Grothendieck groups

The results of this chapter are relatively recent and they have been found by the following
mathematicians: Camille Jordan (1838–1921), Otto Hölder (1859–1937), Otto Schreier (1901–
1929), Hans Zassenhaus (1912–1991), and Alexander Grothendieck (1928).

Let R be a ring and M be an R-module. We look at chains in M .

Definition 7.1 (Chain). A chain for M is sequence of submodules

{0} = M0 ⊂M1 ⊂M2 ⊂ . . . ⊂Mt = M,

where t ∈ Z≥0. The number t is the length of the chain.

Definition 7.2 (Isomorphism). Let (Mi)
t
i=0 be a chain for M and (Nj)

u
j=0 be a chain for N .

An isomorphism from the first chain to the second one is a bijection

ρ : {1, 2, . . . , t} −→ {1, 2, . . . , u}

plus for every i ∈ {1, 2, . . . , t} an R-isomorphism

Mi/Mi−1
∼
−→ Nρ(i)/Nρ(i)−1.

It is clear that isomorphic chains have the same length.

Definition 7.3 (Jordan-Hölder isomorphic). Two modules M and N are Jordan-Hölder iso-
morphic (or J.-H. isomorphic) if they have isomorphic chains. We denote this isomorphism by
M ∼=JH N .

We may wonder whether Jordan-Hölder-isomorphism is an equivalent relation. It is easy to
see that it is reflexive and symmetric. The problem is to prove that it is transitive. Suppose that
a module M is J.-H. isomorphic to N and to L. This means that there are a chain for M and
a chain for N which are isomorphic and there are also a chain for M and a chain for L which
are isomorphic. Since the two chains for M are not necessarily equal, it is not immediately clear
whether N and L also have isomorphic chains.

Definition 7.4 (Refinement). A chain (Mi)
t
i=0 for M is a refinement of a chain (M ′

i)
t′

i=0 for M
if every submodule of M occurs among the Mi at least as often as among the M ′

i .

26
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Theorem 7.5 (Schreier refinement theorem). Every two chains for M have isomorphic refine-
ments.

Proof. Suppose that we have two chains (Mi)
t
i=0 and (Nj)

u
j=0 for M . Then we can refine the

chains in the following way.

Mt = M = Nu

Mt−1 Nu−1

Mi Nj
(Mi ∩Nj) +Mi−1

(Mi ∩Nj−1) +Mi−1

Mi−1 Nj−1

M1 N1

M0 = {0} = N0

Both chains have length ut and are isomorphic. This follow from the butterfly lemma by
Zassenhaus.

Lemma 7.6 (Butterfly lemma by Zassenhaus). Let u, U , v, and V be submodules of M with
u ⊂ U and v ⊂ V . Then

((U ∩ V ) + u)/((U ∩ v) + u) ∼=R ((U ∩ V ) + v)/((u ∩ V ) + v).

Proof. The proof is based on the following diagram, which gives the name to the lemma.
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U V

(U ∩ V ) + u (U ∩ V ) + v

U ∩ V

(U ∩ v) + u (u ∩ V ) + v

u (U ∩ v) + (u ∩ V ) v

u ∩ V U ∩ v

The map (U ∩V )/((U ∩ v) + (u∩V ))→ ((U ∩V ) +u)/((U ∩ v)+ u) is an isomorphism. The
kernel consists of all x + y ∈ U ∩ V with x ∈ U ∩ v and y ∈ u ∩ V . From the symmetry we see
that (U ∩ V )/((V ∩ u) + (v ∩U))→ ((U ∩ V ) + v)/((V ∩ u) + v) is also an isomorphism and we
are done.

We also have a refinement theorem for groups, but we need some slight modifications. We
require that in a chain

{1} = G0 ⊂ G1 ⊂ . . . ⊂ Gt = G

every subgroups Gi−1 is normal in Gi and that in the formulation of the butterfly lemma u ⊂ U
and v ⊂ V are also normal. The proof becomes longer, because we also have to prove the
normality.

Now we can give the answer to the question whether Jordan-Hölder isomorphism is an equiv-
alence relation.

Lemma 7.7. Jordan-Hölder isomorphism is an equivalence relation.

Proof. We have already seen that we only need to prove that Jordan-Hölder isomorphism is
transitive. Suppose that L and M J.-H. isomorphic and that the chains (Mi)

t
i=0 for M and

(Li)
t
i=0 are isomorphic. Moreover, suppose that M is also J.-H. isomorphic to N and let (M ′

j)
u
j=0

for M and (Nj)
u
j=0 for N be isomorphic chains. We are going to refine the two chains for M

following the method in Schreier refinement theorem. We can use any refinement of the chain
(Mi)

t
i=0 in order to refine the chain (Li)

t
i=0 in such a way that the refinement of the first chain is

isomorphic to the refinement of the second one. Analogously, we can refine the chains (M ′
j)
u
j=0

and (Nj)
u
j=0. Finally, we find a chain for M which is a refinement of both (Mi)

t
i=0 and (M ′

j)
u
j=0

and is isomorphic to a refinement of (Li)
t
i=0 and to a refinement of (Nj)

u
j=0. Therefore L and N

are J.-H. isomorphic.

Definition 7.8 (Simple module). A module M is a simple module or irreducible module if the
number of submodules of M is exactly two.

Note that this means that the only submodules of M are {0} and M and that M is not equal
to {0}.

Definition 7.9 (Composition series). A chain (Mi)
t
i=0 of M is a composition series if for every

i ∈ {1, 2, . . . , t} the quotient Mi/Mi−1 is simple.



CHAPTER 7. JORDAN-HÖLDER THEOREM 29

Since a simple module is different from 0, a composition series may be refined only by re-
peating submodules.

Definition 7.10. A chain (Mi)
t
i=0 for M is echt if for every i ∈ {1, 2, . . . , t} it holds that

Mi 6= Mi−1.

Lemma 7.11. If (Mi)
t
i=0 and (Nj)

u
j=0 are two proper chains for M , then each of them has a

refinement such that these two refinements are isomorphic and are still proper chains.

Proof. By Schreier refinement theorem we can refine both chains and find isomorphic refinements

0 = M ′
0 ⊂M

′
1 ⊂ . . . ⊂M

′
s = M

and
0 = N ′

0 ⊂ N
′
1 ⊂ . . . ⊂ N

′
s = N.

Since these refinements are isomorphic, every quotient appears the same number of times. If we
remove all the duplicates, we get two isomorphic proper chains.

Lemma 7.12. Let (Mi)
t
i=0 be a chain for M . Then the following are equivalent facts.

1. (M1)
t
i=0 is composition series.

2. Foe every i ∈ {1, 2, . . . , t} the quotient Mi/Mi−1 is simple.

3. The chain is proper and its unique refinement which is proper is the chain itself.

Proof. Firstly, we proove that 1 ⇒ 2 ⇒ 3. By definition we have 1 ⇒ 2. From 1 it is clear that
the chain is proper. Now suppose that there is a refinement of the chain which is proper, but not
equal to the chain itself. Hence, there are an i and a module M ′ such that Mi−1 ( M ′ ( Mi.
We get 0 ( M ′/Mi−1 ( Mi/Mi−1 and this is a contradiction, because all quotients Mi/Mi−1

are simple.
For the implication 3 ⇒ 1 we may use the same argument in the other direction. Indeed,

if (Mi)
t
i=0 is a composition series, there exists a quotient Mi/Mi−1 which is not simple and it

therefore contains a proper submodule M ′/Mi−1. Adding M ′ to the chain (Mi)
t
i=0 we obtain a

refinement which is a proper chain.

Any two composition series of M are isomorphic and hence they have the same length.
Now we consider Z-modules, that is abelian groups.

Example.

0 ⊂ 30Z/60Z ⊂ 6Z/60Z ⊂ 2Z/60Z ⊂ Z/60Z

All simple Z-modules are isomorphic to Z/pZ where p is a prime number. These are the only
simple abelian groups.

Let A be a Z-module. Then the following are equivalent facts.

1. A has a composition chain.

2. A is finite.

The existence of a composition series

0 = A0 ⊂ A1 ⊂ . . . ⊂ At = A

implies the simplicity of all quotients Ai/Ai−1. Hence, every quotient is isomorphic to Z/pZ
where p is a prime number and A is finite.

If A is finite, we may use the next result to prove that A has a composition series.
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Definition 7.13 (Finite length). A module M has finite length if it has a composition series.

The following are equivalent facts.

1. M has finite length.

2. There exists an integer number b such that any proper chain for M has length less than b.

If any proper chain for M has length less than b, then the refinement of (Mi)
t
i=1 stops and we

find a composition series. The other implication follows by taking b equal to the length of a
composition series plus one.

Definition 7.14 (Length). Let (Mi)
t
i=0 be a composition series of M . Then t is the length of

M . We will denote the length of M by length(M) or l(M).

Definition 7.15 (S-length and composition factor). Let S be a simple R-module and let

M be an R-module of finite length with composition series (Mi)
l(M)
i=0 . Then #{i : 0 < i ≤

l(M),Mi/Mi−1
∼=R S} is the S-length of M . We will denote the S-length of M by lS(M) and

we will say that S is a composition factor if lS(M) ≥ 1.

It is clear that we have

l(M) =
∑

S (up to isomorphism)

lS(M).

Example. Consider that case R = Z. The above claim says that if A is a finite abelian group,
then

#A =
∏

p prime

plZ/pZ(A).

In other words, if
0 = A0 ⊂ A1 ⊂ . . . ⊂ At = A

is a composition series, then #A =
∏t
i=1 #(Ai/Ai−1).

Definition 7.16 (Semisimplification). Let M be an R-module of finite length with composition

series (Mi)
l(M)
i=0 . ‘The’ semisimplification Mss of M is the R-module

Mss =

l(M)
⊕

i=1

(Mi/Mi−1).

The semisimplication of M is independent of the choice of the composition series. We will
see that the semisimplification of M is semisimple, as the name suggests.

Lemma 7.17. Let L and M be R-modules and let L be simple. Then any R-homomorphism
f : L→M is either the zero homomorphism or injective and any R-homomorphism g : M → L
is either the zero homomorphism or surjective.

Proof. We know that ker f is a submodule of L and hence either ker f = L or ker f = 0. In the
first case f ≡ 0, in the second one f is injective.

Since g(M) is a submodule of L, either g(M) = 0 or g(M) = L. In the former case g ≡ 0, in
latter one g is surjective.

The following are consequences of the previous lemma.
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1. If L and L′ are simple, then any R-linear map L → L′ is either the zero map or an
isomorphism.

2. If L is simple, then EndR(L) is a division ring (“Schur’s lemma”). For instance, if L =
Z/pZ, then EndZ(Z/pZ) ∼= Fp.

3. If L and L′ are two simple R-modules and they are not isomorphic, then HomR(L,L′) = 0.

Definition 7.18 (Maximal ideal). A maximal ideal of a commutative ring R is an ideal m ⊂ R
of R such that #{I : I ideal of R,m ⊂ I ⊂ R} = 2.

An equivalent definition is that an ideal m ⊂ R is maximal if and only if R/m is simple.
By Zorn’s lemma, every commutative ring which is not equal to 0 has a maximal ideal. It is

important that 1 ∈ R.
If a simple module L over a commutative ring R is isomorphic to R/m, then

m = ker(R
ring homomorphism

−→ EndZ(L))

(r 7−→ (x 7→ rx)).

Thus, R/m ∼=R R/m
′ ⇒ m = m′.

Let R be a ring, not necessarily commutative.

Definition 7.19 (Maximal left ideal). A left ideal I of R is a maximal left ideal if #{J :
J is a left ideal of R, I ⊂ J ⊂ R} = 2.

An equivalent definition is that a left ideal I of R is maximal if and only if R/I is simple as
an R-module.

By Zorn’s lemma, every ring different from 0 has a maximal left ideal.

Theorem 7.20. Every simple R-module is of the form R/I where I is a maximal left ideal.

Proof. Suppose L is simple and choose x ∈ L \ {0}. Map R onto L as follows.

g : R −→ L

r 7−→ rx.

The map g is R-linear and g 6≡ 0. By Lemma 7.17, g is surjective. Hence, L ∼=R R/ ker g where
ker g is a maximal left ideal, because R/ kerg is simple.

Let k be a field n be a natural number greater than 1. We take R = M(n, k) = {n × n −
matrices with coefficients in k} and L = kn, where we consider kn as the set of column vectors
of n elements of k. Then L is an R-module via A · v ∈ L for A ∈ R and v ∈ L.

Now we are going to prove that L is simple. Suppose that M is a submodule such that
0 ( M ( L. Let v be a nonzero element of M . It is a well-known fact from linear algebra that,
if v, w ∈ kn with v 6= 0, there is a linear transformation kn → kn such that v 7→ w. Thus, for all
w ∈ L there exists A ∈ R such that Av = w.

We look for a maximal left ideal I ⊂M(n, k) = R with R/I ∼=R L. Choose

x =








1
0
...
0







∈ L = kn.
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We can take

I =







A ∈ R : A








1
0
...
0








=








0
0
...
0














=














0 ∗ ∗ ∗ ∗
0 ∗ ∗ ∗ ∗
...

...
...

...
...

0 ∗ ∗ ∗ ∗







∈ R







.

Changing x (take also

x =












0
1
0
0
...
0












or












0
0
1
0
...
0












etc.)

we find n left ideals I such that R/I ∼=R L.

Theorem 7.21. Let R be a ring and M be an R-module of finite length. Then M is finitely
generated.

Proof. The proof is by induction on l(M). If l(M) = 0, then M is 0 and we are done. If
l(M) = t > 0, then consider the composition series 0 = M0 ⊂M1 ⊂ . . . ⊂Mt = M . By inductive
hypothesis, Mt−1 is finitely generated. The quotient Mt/Mt−1 is simple, hence Mt/Mt−1 is
isomorphic to R/(maximal left ideal) and is generated by one element x + Mt−1. The module
M is generated by Mt−1 and x, therefore it is finitely generated.

The previous proof also shows that the number of generators is bounded by l(M).

Theorem 7.22. Let M be an R-module and N ⊂ M be a submodule. Then the following are
equivalent facts.

1. The module M has finite length.

2. Both N and M/N have finite length.

In other words, for every short exact sequence 0 → N → M → L → 0 the module M has finite
length if and only if both N and L have finite length. Moreover, the above statements imply that
l(M) = l(N)+l(M/N) and that for every simple R-module S we have lS(M) = lS(N)+lS(M/N).

Proof. 1 ⇒ 2. We have 0 ⊂ N ⊂ M . If N has proper chains of arbitrary length, then M also
has such chains. If we quotient the above chain by N , we find 0 ⊂M/N , where N is mapped to
0 and M is mapped surjectively onto M/N . Thus, if M/N has proper chains of arbitrary length,
then M also has such chains.

2 ⇒ 1 and the last implication. Let 0 = N0 ⊂ N1 ⊂ . . . ⊂ Nu = N and 0 = L0 ⊂ L1 ⊂
. . . ⊂ Lv = M/N be composition series. Let f be the projection map M → M/N , which is
clearly surjective. Thus, 0 = N0 ⊂ N1 ⊂ . . . ⊂ Nu = N = f−1L0 ⊂ f−1L1 ⊂ f−1Lv = M is a
composition series of M and l(M) = u+ v = l(N) + l(M/N). Since all quotients do not change,
we also have lS(M) = lS(N) + lS(M/N).



Chapter 8

Additive invariants

Let R be a ring and let C be a class of R-modules with 0 ∈ C.
Examples.

C = {all R-modules}
C = {all finetely generated R-modules}
C = {all R-modules of finite length}

Definition 8.1 (Additive function). Let A be an abelian group. A function f : C → A is an
additive function if for every exact sequence 0→ N → M → L→ 0 with L, M , N ∈ C it holds
that f(M) = f(N) + f(L). We also call f an additive invariant.

If we take N = M = L = 0 in the definition, we find that f(0) = 0 for every additive invariant
f . If we choose L = 0, then N ∼= M implies f(M) = f(N).
Example. R = Z, C = {finite abelian groups}, A = Q∗

>0, f(M) = #M .
We denote the set of additive functions C → A by Add(C, A).

Definition 8.2 (Universal additive function). Let B be an abelian group. A function g : C → B
is a universal additive function if g is additive and for every abelian group A the map

Hom(B,A) −→ Add(C, A)

h 7−→ hg

is a bijection.
In other words, g is universal additive if g is additive and for every abelian group A and for

every additive f : C → A there exists a unique group homomorphism h : B → A which make the
following diagram commute.

C B

A

g

f h

Now we want to construct a universal additive function givenR and C. Let Z(C) = {(nM )M∈C :
nM ∈ Z,#{M : nM 6= 0} < ∞}. For every M ∈ C we define a vector eM ∈ Z(C) as follows.

33
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The vector eM has a 1 at position M and 0 at all other positions. The eM are basis vectors
of Z(C). We may also write (nM )M∈C =

∑<∞
M nMeM . Let H be the subgroup generated by

{eM − eL − eN : 0 → L → M → N → 0 is a short exact sequence in C}. In Z(C)/H we have
eM = eL + eN . We denote Z(C)/H by K(C).

Definition 8.3 (Grothendieck group). The group K(C) is called the Grothendieck group of C.

For every M ∈ C we will denote the element eM of K(C) by [M ].

Definition 8.4 (Effective and virtual elements). An element of K(C) is effective if it is of the
form [M ] with M ∈ C. Other elements are virtual.

Theorem 8.5. The function C
[ ]
−→ K(C) is universal additive.

Proof. Let A be an abelian group. Note that Hom(Z(C), A) = {all functions C → A}. Then

Hom(K(C), A) = Hom(Z(C)/H,A) ∼= {j ∈ Hom(Z(C), A) : j|H = 0}
∼= {f : C → A : ∀0→ N →M → L→ 0 : f(M) = f(L) = f(N)}

= Add(C, A).

Lemma 8.6. If C is closed under ⊕, then every element of K(C) is of the form [M ]− [M ′] with
M,M ′ ∈ C.

Proof. It is clear that {[M ] : M ∈ C} generates the group K(C). For M,M ′, N,N ′ ∈ C we have
([M ] − [M ′]) − ([N ] − [N ′]) = [M ] + [N ′] − ([M ′] + [N ]) = [M ⊕ N ′] − [M ′ ⊕ N ], because the
sequences 0 → M → M ⊕ N ′ → N ′ → 0 and 0 → M ′ → M ′ ⊕N → N → 0 are exact. Hence,
the subset {[M ] − [M ′] : M,M ′ ∈ C} is a subgroup of K(C) which contains all generators and
therefore {[M ]− [M ′] : M,M ′ ∈ C} = K(C).

Example. Let R be a ring.

1. If C = {all R-modules}, then K(C) = 0.

Proof. Consider the following exact sequence

0→M
f
→

∞⊕

i=0

M
g
→

∞⊕

i=0

M → 0,

with f(x) = (x, 0, . . . , 0) and g(x0, x1, x2, . . .) = (x1, x2, . . .). Then [
⊕∞

i=0M ] = [M ] +
[
⊕∞

i=0M ], thus [M ] = 0.

2. Let C = {finitely generated R-modules}. Notation: K(C) = G(R) = Gfg(R).

Theorem 8.7. Let k be a field. Then dim : G(k)
∼
→ Z is an isomorphism.

Proof. Let C = {finitely generated k-modules} = {finite-dimensional k-vector spaces}. Then
we have the following diagram.
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C G(k)

Z

[ ]

dimk hdim

.

We have the map dim : G(k) → Z and it is unique because of the universality of [ ] by
Theorem 8.5). This map is given by [M ] 7−→ dimk(M) and it is well-defined, because
M ∼= N ⇔ dimk(M) = dimk(N). We will show that is also bijective by proving that the
map n 7→ n[k] is the inverse of dim. We have [ka] + [kb] = [ka+b] and by induction we get
n[k] = [kn]. Now let M ∈ C with dimk(M) = n and note that M ∼= kn and [M ] = [kn].

Thus, n
h
7−→ n[k] = [kn] = [M ]

dim
7−→ n and [M ]

dim
7−→ dimk(M) = n

h
7−→ [kn] = [M ].

We also have G(Z) ∼= Z.

Proof. Every finite abelian group is isomorphic to a product of cyclic groups
⊕r

i=1(Z/niZ)
where ni ∈ Z≥0.

For n ∈ Z>0 we have the exact sequence 0 → Z
n
→ Z → Z/nZ → 0. Thus, [Z/nZ] = 0.

Now we get the isomorphism

[M ] =

[
r⊕

i=1

(Z/niZ)

]

7−→ #{i : 1 ≤ i ≤ r, ni = 0} = dimQ(Q⊗Z M)

and we are done.

3. Let C = {all R-modules of finite length}. We write K(C) as Gfl(R).

Theorem 8.8. There exists a group isomorphism

Gfl(R)
∼
−→ Z(S)

[M ] 7−→ (lS(M))S∈S ,

where S = {simple R-modules}/ ∼=R.

Proof. Since for every S ∈ S we have lS(M) = lS(N) + lS(L) if the sequence 0 → L →
M → N → 0 is exact, the function

f : C −→ Z

M 7−→ (lS(M))S∈S

is additive invariant. The universal property of Gfl(R) gives a map h : Gfl(R)→ Z(S) and
the following commutative diagram.

C Gfl(R)

Z(S)

[ ]

f h

.
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We will show that the map

j : Z(S) −→ Gfl(R)

(nS)S∈S 7−→
∑

S∈S

(nS [S])

is the inverse of h. Firstly, the map j is a left inverse , because hj[eS ] = h([S]) = eS.
Conversely, jh([M ]) = j(

∑

S∈S lS(M)eS) =
∑

S∈S lS(M)[S] =
∑t

i=1[Mi/Mi−1], if 0 =
M0 ⊂M1 ⊂ . . . ⊂Mt = M is composition series of M .

For 1 ≤ u ≤ t the sequence 0 → Mu−1 → Mu → Mu/Mu−1 → 0 is exact. Thus, we have
[Mu] = [Mu−1] + [Mu/Mu−1]. By induction on u we get

∑t
i=1[Mi/Mi−1] = [M ]. This

proves that the map j is a left inverse of h.

Note that under this isomorphism the subgroup of effective elements of Gfl(R) has image

Z
(S)
≥0 .

Example. Let R = Z and C = {finite abelian groups}. Let P be the set of prime numbers
{2, 3, 5, . . .}. Then we have the following commutative diagram.

C Gfl(Z) ∼= Z(P)

Q∗
>0

[ ]

# h

,

where the map h given by (np)p∈P 7→
∏

p∈P p
np is an isomorphism, because of the unique

prime factorization.

Corollary 8.9. Let M and N be R-modules of finite length. Then

[M ] = [N ] ⇔ both M and N have isomorphic composition chains

⇔ M ∼=JH N

⇔ Mss
∼= Nss.

Example. Let G = 〈σ〉 with #G = 2 and let k be a field of characteristic different from 2. We
have seen that every k[G]-module V is of the form V+⊕V−, where both V+ and V− are k-vector
spaces such that for all x ∈ V+ : σx = x and for all x ∈ V− : σx = −x.

If V is simple, then we have either V = V+ or V = V−.
Moreover, for every nonzero element v ∈ V we see that kv is a nontrivial k[G]-submodule of

V . Hence, if V is simple, we have dim V = 1.
Therefore, V is simple if and only if (either V = V+ or V = V−) and dim V = 1.
In conclusion, every simple k[G]-module is isomorphic either to k+ or to k−, where k+ := k

with σx = x for all x ∈ k+ and k− := k with σx = −x for all x ∈ k−. We leave to the reader the
proof that k+ and k− are non-isomorphic k[G]-modules.

Theorem 8.8 gives the following isomorphism.

Gfl(k[G])
∼
−→ Z⊕ Z

[V ] 7−→ (dimk V+, dimk V−).

Note that V has finite length over k[G]⇔ dimk V <∞⇔ dimk V+ <∞ and dimk V− <∞.
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Theorem 8.10. Let k be a field and R be a ring which contains k as a subring and suppose that
k ⊂ Z(R) and dimk R <∞. Let M be an R-module. Then the following facts are equivalent.

1. M is finitely generated as R-module;

2. M has finite length as R-module;

3. dimkM <∞.

Furthermore, 1 ≤ #S <∞, where S = {simple R-modules}/ ∼=R.

Example of rings R which satisfy the previous conditions are k, finite field extensions of k,
group rings k[G] with G a finite group, and matrix rings M(n, k).

Proof. We have already proven that (ii)⇒ (i).
(i)⇒ (iii). The module M is finitely generated. Thus, there exists a natural number n such

that Rn maps surjectively onto M . This implies that dimk(M) ≤ dimk(R
n) = n dimk(R) <∞.

(iii)⇒ (ii). Every R-submodule of M is also a k-submodule. Hence, every R-chain of M is
also a k-chain and the length of every proper R-chain is not larger than the length of a maximal
proper k-chain. This is equal to dimkM .

Note that this proof also show that lengthR(M) ≤ dimk(M).
Proof of 1 ≤ #S < ∞. The ring R is a finitely generated R-module. Hence, R has finite

length as an R-module. If S is a simple module, then by Theorem 7.20 we have S = R/L where
L is a maximal left ideal of R. There exists a composition series of R of the form 0 ⊂ ... ⊂ L ⊂ R.
Hence, lS(R) ≥ 1 and

l(R) =
∑

S∈S

lS(R) ≥ #S.

Thus, 1 ≤ #S <∞.
Note that the same proof gives that #S ≤ l(R) ≤ dimk(R).

Theorem 8.11. Let k and R be as in the previous theorem. Let S be a simple R-module. Then
the endomorphisms ring EndR(S) is a division ring, it contains k in its centre and
dimk(EndR(S)) <∞.

If k is also algebraically closed, then EndR(S) = k.

Proof. Let f a nonzero element of EndR(S) Then ker(f) = 0 and im(f) = S, because S is simple
and the only submodules are 0 and S. Hence EndR(S) is a division ring.

Since S is simple, it has finite length and by Theorem 8.10 we get n := dimk(S) <∞.
We have EndR(S) ⊂ Endk(S) ∼= M(n, k). It is well-known that dimk(M(n, k)) = n2 < ∞.

The ring EndR(S) contains k and, since k ⊂ Z(M(n, k)), then k ⊂ Z(EndR(S)).
Now suppose that k is algebraically closed. We already know that k ⊂ EndR(S). Hence, we

only need to prove that k ⊃ EndR(S).
Choose α ∈ EndR(S) and define the ring homomorphism

ϕ : k[X ] −→ EndR(S)
∑

aiX
i 7−→

∑

aiα
i.

Since k[X ] is commutative and EndR(S) is a division ring, the image of ϕ is a domain. Therefore,
the kernel kerϕ is a prime ideal of k[X ], that is kerϕ = (X−a) with a ∈ k. Note that kerϕ 6= 0,
because dimk(EndR(S)) <∞ and dimk(k[X ]) =∞.

Now ϕ(X − a) = 0 = α− a. Hence, α = a.
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Let k be a field, G be a finite group and R = k[G]. We denote by R(G) = Rk(G) = G(k[G])
the Grothendieck group of the k[G]-modules of finite k-dimension.

Theorem 8.12. Let k be a field and G be a finite group. Then Rk(G) has a unique ring via the
given addition and the multiplication such that [M ][N ] = [M ⊗kN ] for any two finitely generated
k[G]-modules M and N . M ⊗k N is a k[G]-module via σ(x ⊗ y) = σ(x) ⊗ σ(y) for all σ ∈ G,
x ∈M , y ∈ N . The ring is commutative.

Example. If #G = 2 and k is a field of characteristic different from 2, then S = {k+, k−} and
R(G) = Z[k+]⊕ Z[k−].

Let ǫ, η ∈ {±1}. We know that kǫ ⊗k kη = k as k-vector spaces. For all x ∈ kǫ, y ∈ kη
we have σ(x ⊗ y) = σ(x) ⊗ σ(y) = ǫx ⊗ ηy = ǫη(x ⊗ y). Hence, [kǫ][kη] = [kǫη] and R(G) ∼=
Z[group of order 2] as rings.

Proof. We have to define a multiplication Rk(G) ×Rk(G) −→ Rk(G) which satisfies the prop-
erties of the theorem.

Firstly, fix M and consider the map

f : C −→ Rk(G)

N 7−→ [M ⊗k N ].

If the sequence 0→ N1 → N2 → N3 → 0 is exact, then the sequence M ⊗kN1 →M ⊗kN2 →
M⊗kN3 → 0 is also exact. Since k is a field, the first sequence splits as a sequence of k-modules.
It follows that the induced map M ⊗k N1 → M ⊗k N2 is injective. Thus, 0 → M ⊗k N1 →
M ⊗k N2 → M ⊗k N3 → 0 is exact. Since all maps are also k[G]-linear, the function f is an
additive invariant.

The universal property ofRk(G) gives a unique group homomorphism µM such that µM ([N ]) =
[M ⊗k N ].

C Rk(G)

Rk(G)

[ ]

f µM

Now consider the map

g : C −→ Hom(Rk(G),Rk(G))

M 7−→ µM .

Check that this map is also an additive invariant. The proof is almost the same as the previous
one.

The universality gives a unique group homomorphism h : Rk(G) −→ Hom(Rk(G),Rk(G))
such that the following diagram commutes.

C Rk(G)

Hom(Rk(G),Rk(G))

[ ]

g h

.
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Define the multiplication in Rk(G) by xy = h(x)(y) for all x, y ∈ Rk(G).
By construction this map has the desired property [M ][N ] = [M ⊗k N ], because [M ][N ] =

h([M ])[N ] = µM ([N ]) = [M ⊗k N ].
Distributive laws follow from bilinearity. Associativity follows from (L ⊗k M) ⊗k N ∼=k[G]

L⊗k (M ⊗k N).
The element [k] associated to the k[G]-module k with σx = x for all σ ∈ G, x ∈ k acts as the

unit element. Check that the map k⊗kN → N with x⊗y 7→ xy gives a k[G]-linear isomorphism.
Commutativity of the multiplication follows from the commutativity of −⊗k −.

Theorem 8.13. Let k be a field and G be a finite group. Then Rk(G) has a unique ring auto-
morphism where for every finitely generated k[G]-module M it holds that [M ] = [Homk(M,k)].
The module Homk(M,k) is a k[G]-module via σf(m) = f(σ−1m) for all σ ∈ G, f ∈ Homk(M,k),
m ∈M . This ring automorphism is an involution.

Note that this G-action on Homk(M,k) is obtained as follows. It is known that Homk(M,k)
is a right k[G]-module. Hence, it is a left k[G]opp-module. The ring isomorphism

k[G] −→ k[G]opp

∑

aσσ 7−→
∑

aσσ
−1

makes Homk(M,k) a left k[G]-module.

Proof. We use the notation M † := Hom(M,k).
Suppose that 0 → M1 → M2 → M3 → 0 is a short exact sequence of finitely generated

k[G]-modules. Because as a sequence of k-modules it splits and Homk(M,k) is left exact, we

see that 0 → M †
3 → M †

2 → M †
3 → 0 is also an exact sequence of k[G]-linear maps. Thus,

[M †
2 ] = [M †

1 ] + [M †
3 ] and ϕ : M → [M †] is an additive invariant.

From the universal property we get a unique group isomorphism : Rk(G) → Rk(G) such
that ∀M ∈ C : [M ] = [M †].

C Rk(G)

Rk(G)

[ ]

ϕ

The map

M −→ M †† = Homk(Homk(M,k), k)

x 7−→ (f 7→ f(x))

is a k[G]-linear isomorphism. Hence, [M ] = [M ] and is its own inverse. In particular, it is a
group isomorphism.

To prove that is also a ring isomorphism, it is sufficient to prove it for generators of
Rk(G). We need to show that [M †][N †] = [(M ⊗k N)†]. We have already seen that [M †][N †] =
[M † ⊗k N

†].
We construct a homomorphism

ψM,N : Homk(M,k)⊗k Homk(N, k) −→ Homk(M ⊗k N, k)

f ⊗ g 7−→ (x⊗ y 7→ f(x)g(y)).
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The existence of ψ follows from universal properties of the two tensor products we use.
Moreover, ψ is a k[G]-linear map.

If M = N = k, the map ψM,N is an isomorphism. Now check that ψM,N is also an isomor-
phism if both M and N are finite direct sums of k. This proves that ψM,N is an isomorphism
for finite-dimensional vector spaces M and N , and therefore for M,N ∈ C.

The isomorphism ψ gives an isomorphism between M † ⊗k N
† and (M ⊗k N)†. This proves

that [M † ⊗k N
†] = [(M ⊗k N)†].



Chapter 9

Semisimplicity

Proposition 9.1. Let M be a semisimple module.

• If 0→ L→M → N → 0 is exact, then both L and N are semisimple.

• If M 6= 0, then M has a simple submodule.

Proof. Suppose that the sequence 0 → L
f
→ M → N → 0 is exact. Firstly, we show that L is

semisimple.

Suppose that the sequence 0→ J
h
→ L→ K → 0 is exact. Since both h and f are injective,

the composite function i := fh is also injective and we can construct the following commutative
diagram with exact rows.

0 −→ J
h
−→ L −→ K −→ 0



yidJ



yf

0 −→ J
i
−→ M −→ M/J −→ 0.

Since M is semisimple, the second row splits and there is an R-linear map j : M → J such
that ji = idJ . Define k := jf . Then kh = jfh = ji = idJ , and therefore the first row also splits.
Hence, L is semisimple.

Since the sequence 0→ L→M → N → 0 splits, we have M ∼= L⊕N . Thus, there is also a
split sequence 0→ N →M → L→ 0. It follows that N is also semisimple.

Now choose a nonzero element x ∈ M . Then Rx ⊂ M is a submodule of R isomorphic to
R/I where I = Ann(x). Note that I 6= R. Let L with I ⊂ L ⊂ R a maximal left ideal. Then
R/L is simple.

Consider the exact sequence 0→ L/I → R/I → R/L→ 0. This sequence splits, because M
is semisimple. Hence, Rx ∼= R/I ⊂ M is also semisimple and we have (L/I)⊕ (R/L) ∼= R/I ∼=
Rx ⊂M . The module R/L is isomorphic to a simple submodule of M and we are done.

Theorem 9.2. Let R be a ring and M be an R-module. The following facts are equivalent.

1. M is semisimple.

2. There exist a collection (Si)i∈I of simple R-modules and an isomorphism M ∼=
⊕

i∈I Si.

3. There exist a collection (Si)i∈I of simple R-modules and a surjective R-linear map
⊕

i∈I Si →→M .

41
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Example. Take R = Z. Then M is semisimple if and only if M ∼=
⊕

i∈I Z/piZ where the
numbers pi are prime.

Proof. (1)⇒ (3). Take T = {simple submodules of M} and consider the map

f :
⊕

S∈T

S −→ M

(xS)S∈T 7−→
∑

S∈T

xS .

Define N as the image of f . Since M is semisimple, there exist a submodule K ⊂ M such
that M = N ⊕K.

If K = 0, the map f is the requested surjection. Hence, we may assume that K 6= 0. Since
K is semisimple, by Proposition 9.1 K has a simple submodule U . We have U ∈ T , because
U ⊂M . This means that U ⊂ N , which contradicts N ∩K = 0.

(3)⇒ (2).
Let f :

⊕

i∈I Si −→−→M as in the theorem.
Define for a subset J ⊂ I the map fJ :

⊕

i∈J Si →M induced by f .

⊕

i∈I Si M

⊂

⊕

i∈J Si

f

fJ

By Zorn’s lemma, we can choose a maximal subset J from all subsets J ′ ⊂ I where fJ′ is
injective. We will prove that fJ is also surjective.

If I = J , we are done. Now suppose that I 6= J and let h ∈ I \J . The maximality of J implies

that f(J∪{h}) is not injective. Hence, the map Sh
f{h}
→ M → M/(im(fJ)) is not injective. Since

Sh is simple, this map has to be the zero map. This means that the image of Sh is contained in
the image of fJ .

Hence, for all i ∈ I the image of f{i} in M is contained in im(fJ), that is the whole image of
f is contained in im(fJ).

(2)⇒ (1). Suppose that the short sequence 0→ L→
⊕

i∈I Si
p
→ N → 0 is exact.

The method in the proof of (3) ⇒ (2) gives from the surjection p a subset J and a map pJ
such that pJ :

⊕

i∈J Si → N is an isomorphism.

⊕

i∈I Si N

⊂

⊕

i∈J Si

p

pJ

The homomorphism N
p−1

J→
⊕

i∈J Si →֒
⊕

i∈I Si gives a splitting of the exact sequence.

Definition 9.3 (Semisimple ring). A ring R is a semisimple ring if every left R-module is
semisimple.

Proposition 9.4. The following facts are equivalent.

1. R is semisimple.

2. R is semisimple as a left R-module.
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3. Every short exact sequence of R-modules splits.

Proof. (3)⇔ (1). By definition.
(1)⇒ (2). Trivial.
(2) ⇒ (1). Let M be an R-module. Then there exists a subset I such that R(I) →→ M .

Since R is semisimple, by Theorem 9.2 R(I) is semisimple and by Proposition 9.1 M is also
semisimple.

Example. Let R = D be a division ring. If x ∈ D, x 6= 0, then Dx = D. Hence, D has
exactly two submodules, namely 0 and D, and it is simple as a left D-module. In particular, D
is semisimple. Every simple D-module is isomorphic to D/(maximal left ideal) = D.

Every D-module is semisimple and it is the direct sum of copies of D.

Lemma 9.5. It holds that D(I) ∼= D(J) ⇔ #I = #J .

Proof. (⇐). Trivial.
(⇒). If I is finite, then the D-length of D(I) is equal to #I. Hence, D(J) also has finite

length and #J = lD(D(J)) = lD(D(I)) = #I.
If I is infinite, then J is also infinite. Let f be an isomorphism D(I) ∼

→ D(J) and let (ei)i∈I
be the canonical basis of D(I).

Define Ji := {j : the j-th coordinate of f(ei) 6= 0} ⊂ J . Since f is surjective, J =
⋃

i∈I Ji.
Thus, #J ≤

∑

i∈I #Ji ≤ #I · #Z = #I. By symmetry we get #J ≤ #I, and therefore
#I = #J .

Theorem 9.6 (Maschke). Let k be a field and G be a finite group with char k 6 |#G (for instance,
if char k = 0). Then k[G] is semisimple.

Proof. Suppose that we have a short exact sequence 0 → L → M
p
→ N → 0 of k[G]-modules.

If we consider this sequence as a sequence of k-modules, then it splits, because k is semisimple.
Hence, there exists a k-linear map q : N →M such that pq = idN .

Define r : N →M by

r =
1

#G

∑

τ∈G

τqτ−1 (in Homk(N,M)).

Then we have

pr =
1

#G

∑

τ∈G

pτqτ−1 =
1

#G

∑

τ∈G

idN = idN ,

because p is a k[G]-linear map.
We also have that for σ ∈ G

σrσ−1 =
1

#G

∑

τ∈G

pστq(στ)−1 = r.

Thus, r is k[G]-linear and r gives a splitting of the sequence.

Proposition 9.7. Let R ∼=
⊕

i∈I Si as a left R-module, with Si simple for every i ∈ I. Then I
is finite and every simple R-module is isomorphic to one of the Si.
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Proof. Let f : R →
⊕

i∈I Si be a left R-module isomorphism. Let f(1) = (ai)i∈I ∈
⊕

i∈I Si.
Define J := {i ∈ I : ai 6= 0}, a finite subset of I. Now we have f(1) ∈

⊕

i∈J Si and therefore
Rf(1) ⊂

⊕

i∈J Si. Since f is R-linear and surjective, we get Rf(1) = f(R1) = f(R) =
⊕

i∈I Si.
Thus,

⊕

i∈I Si ⊂
⊕

i∈J Si ⊂
⊕

i∈I Si and I = J , that is I is finite.
Now R ∼=R S1 ⊕ S2 ⊕ . . .⊕ Sn for an n ∈ Z. The ring R has a composition series where only

the Si occur as quotients and therefore it has finite length.
Let S be a simple R-module, then S ∼= R/L for a maximal left ideal L ⊂ R. We have

0 ⊂ L ⊂ R and L has finite length, that is L has a composition chain. In this way we find a
composition chain of R. This chain is Jordan-Hölder isomorphic to the composition chain where
only the Si occur. Hence, S ∼= Si for an i.

Corollary 9.8. If R is semisimple and the Si are as in Proposition 9.7, then every R-module

is isomorphic to an R-module of the form
⊕

i∈I S
(Vi)
i for certain sets Vi.

Example. Let D be a division ring, n ∈ Z>0 and R = M(n,D). Then the following facts true.

1. S = Dn is a simple R-module. (We consider Dn as the set of column vectors of n elements
of D.)

2. R = Sn as a left R-module, R is semisimple, S is up to isomorphism the unique simple
R-module and every R-module is isomorphic to S(V ) for a set V .

3. The map ϕ : Dopp ∼
→ R End(S) given by d 7→ (x 7→ xd) is a ring isomorphism.

Proof. 1. Consider Dn as a right D-module. Then R = EndD(Dn). If x ∈ Dn, x 6= 0, then
xD ∼=D D, where xd↔ d. Thus,

Dn = (xD)⊕ (complement)
f
−→ D

(xd, . . .) 7−→ d

is surjective. The composition of f with the inclusion fi : D → Dn, d 7→ dei, where
ei is the i-th vector of the canonical basis, gives for the element x ∈ xD the following:

x = (x, 0)
f
7−→ 1 7−→ ei. Since this composite map is a D-linear endomorphism of Dn, it is

an element ri of R. Thus, for every i = 1, . . . , n there is an ri ∈ R with rix = ei. We have
e1, . . . , en ∈ Rx and therefore Dn ⊂ Rx ⊂ Dn, that is Rx = Dn. Hence, Dn is a simple
R-module.

2. The proof that R = Sn is the same as the one for fields. R is clearly semisimple. The rest
of the argument follows from Proposition 9.7.

3. The map f : D → R End(S) given by d 7→ (x 7→ xd) is well-defined, because (Ax)d = A(xd)
for all A ∈ R and d ∈ D. Furthermore, we see that for all d1, d2 ∈ D we have d1 + d2 7→
(x 7→ x(d1 + d2)) = (x 7→ xd1 + xd2) = (x 7→ xd1) + (x 7→ xd2). Thus, for all d1, d2 ∈ D
we get f(d1 + d2) = f(d1) + f(d2) and f is a group homomorphism.

From the associativity of D it follows that for all d1, d2 ∈ D we have (x 7→ x(d1d2)) =
(x 7→ (xd1)d2) and therefore for all d1, d2 ∈ D we get f(d1d2) = f(d1) ◦ f(d2). It is clear
that f(1) = id.

We see that f is a ring antihomomorphism. Thus, f : Dopp → R End(S) is a ring homo-
morphism of Dopp.

We still need to prove that f is bijective. Suppose that δ : S → S is an R-linear endomor-
phism. We look for a d ∈ D with f(d) = δ, that is ∀x ∈ S : δ(x) = xd. Since δ is R-linear,
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for all r ∈ R and x ∈ S we have δ(rx) = rδ(x). Thus, for every r ∈ R, δ maps the set rS
into rS.

Apply this with r the matrix with 1 at position (i, i) and 0 elsewhere. We have

rS =















0
...
0
D
0
...
0















= eiD.

Thus, δ(ei) = eidi voor een di ∈ D and

δ








a1

a2

...
an








=








a1d1

a2d2

...
andn







.

Now take

r =








1 0 . . . 0
1 0 . . . 0
...

...
...

1 0 . . . 0







.

We get

rS =














a
a
...
a








: a ∈ D







.

Hence,

δ








1
1
...
1








=








a
a
...
a








for an a ∈ D. On the other hand, we already know that

δ








1
1
...
1








=








d1

d2

...
dn







.

It follows that a = d1 = d2 = d3 = . . . = dn. Thus, for all x ∈ S we have δ(x) = xd for a
d ∈ D. The map f is surjective.

It is easy to see that f is also injective, because the kernel of f is a two-sided ideal in the
division ring D and it is therefore equal to 0.
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Define D′ = (R End(S))opp. Note that Dopp ∼= (D′)opp. Now ϕ induces an isomorphism
R→ EndD′(S) ∼= M(n,D′).

Corollary 9.9. Let n ∈ Z>0 and let k be a field. Then Z(M(n, k)) = k.

Proof. ⊃: Clear.
⊂: If r ∈ Z(M(n, k)), Then the map S = kn

r
−→ kn; x 7→ rx is M(n, k)-linear. Indeed, if

rs = sr for s ∈M(n, k), then r(sx) = s(rx). Hence, r ∈ R End(S) = k.

Theorem 9.10. Let t ∈ Z≥0, D1, D2, . . . , Dt division rings and R =
∏t
i=1M(ni, Di). Then the

following facts are true.

1. The ring R is semisimple.

2. For every i ∈ {1, . . . , t} the module Si = Dni

i is a simple R-module.

3. R ∼=
⊕t

i=1 S
ni

i as an R-module.

4. Every simple R-module is isomorphic to Si for a unique i ∈ {1, 2, . . . , t}.

5. Dopp
i
∼= R End(Si).

Proof. We know that R = R1 ×R2 × . . .×Rt, where Ri = M(ni, Di). By the previous example
we have that for all i ∈ {1, 2, . . . , t} the Ri-module Si = Dni

i is simple and that RiRi
∼= Sni

i .

Thus, RR ∼=
⊕t

i=1 S
ni

i . It also follows from the same example that every simple R-module is
isomorphic to Si for a unique i ∈ {1, 2, . . . , t} and that Dopp

i
∼= R End(Si).

Theorem 9.11. Let R be a semisimple ring. Then R is of the form
∏t
i=1M(ni, Di) with t, (ni)

and (Di) as in Theorem 9.10. Furthermore, t, (ni) and (Di) are uniquely determined by R up
to isomorphism.

In the proof of this theorem we will use the following lemmas.

Lemma 9.12. Let R be a ring. Then R and (R End(R))opp are isomorphic rings.

Proof. The map R → (R End(R))opp given by a 7→ (x 7→ xa) is a ring homomorphism with
inverse f 7→ f(1).

Lemma 9.13. Let R be a ring, M1,M2, . . . ,Mm and N1, N2, . . . , Nn be R-modules and let
M =

⊕m
i=1Mi and N =

⊕n
j=1Nj. Then RHom(M,N) ∼=

⊕

i,j RHom(Mi, Nj), where i runs
over 1, . . . ,m and j over 1, . . . , n.

Proof. Clear.

Proof of Theorem 9.11. We know that RHom(Si, Sj) = 0 if Si 6∼= Sj . Moreover, R End(Si) = Di

is a division ring.
Suppose that S1, S2, . . . , St are all simple R-module and pairwise non-isomorphic. Choose

n1, . . . , nt such that R R
∼=
⊕t

i=1 S
ni

i . Then

R End(R) = R End(
t⊕

i=1

Sni

i ) =
t∏

i−1

R End(Sni

i ) =
t∏

i=1

∏

1≤j≤ni

1≤k≤ni

RHom(Si, Si)

=

t∏

i=1

ni∏

j,k=1

Dopp
i =

t∏

i=1

M(ni, D
opp
i ).
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A simple calculation shows that if you choose well the identification
∏

j,kDi
∼
→M(ni, D

opp
i ),

then the resulting map R End(R)→
∏t
i−1M(ni, D

opp
i ) is a ring isomorphism.

We have R ∼= (R End(R))opp ∼=
∏t
i=1M(ni, D

opp
i )opp =

∏t
i=1M(ni, Di). This last equal-

ity holds, because for n ∈ Z>0 and a division ring D we have that the map M(n,D)opp →
M(n,Dopp) given by A 7→ AT is an isomorphism.

Note that ni = lengthSi
R. For all i ∈ {1, . . . , t} the module Si is a left Dopp

i -module and
it is therefore a right Di-module. Since (rs)d = r(sd) for r ∈ R, s ∈ Si and d ∈ Di, it is
R-Di-bimodule.

Theorem 9.14. Let R be a simisimple ring, k ⊂ Z(R) be a division ring which is a field,
and let [R : k] = dimk(R) < ∞. Then R ∼=

∏t
i=1M(ni, Di) met t ∈ Z>0, ni ∈ Z>0 with

t ∈ Z>0, ni ∈ Z>0 and Di a division ring with k ⊂ Z(Di) and [Di : k] < ∞. Moreover,
∑t

i=1 n
2
i [Di : k] = [R : k]. If k = k̄, then Di = k for all i ∈ {1, . . . , t} and

∑t
i=1 n

2
i = [R : k].

Proof. Let S1, S2, . . . , St be as before. Then dimk(Si) < ∞. By Theorem 9.11 it follows that
R ∼=

∏t
i=1M(ni, Di) with ni = lengthSi

R and Di = (R End(Si))
opp ⊂ (M(dimk(Si), k))

opp.
Hence, k ⊂ Z(Di).

The equality
∑t
i=1 n

2
i [Di : k] = [R : k] is easily proved by comparing the dimensions in the

equality R ∼=
∏t
i=1M(ni, Di).

If k = k̄, then by Theorem 8.11 we have Di = k.

Note that in the case k = k̄ we have Si ∼= Dni

i = kni and thefore ni = dimk(Si).
Example. Let R = k[G] with G a group such that char k 6 |#G < ∞. Then [R : k] = #G. If
k = k̄, then

∑t
i=1 n

2
i = #G.

Example. k = C, G = S3. Hence, #G = 6.
We have a ring isomorphism C[S3] ∼=

∏t
i=1M(ni,C). By Theorem 9.14 it follows that

n2
1 + n2

2 + . . . + n2
t = 6. Now there are two options: either t = 6, n1 = n2 = . . . = n6 = 1, or

t = 3, n1 = n2 = 1, n3 = 2. Suppose the first case holds, then M(1,C) = C and C[S3] ∼= C6.
Hence, C[S3] is commutative and this is a contradiction. We are therefore in the second case:
t = 3, n1 = n2 = 1 and n3 = 2. We find that C[S3] ∼= C × C ×M(2,C). Up to isomorphism
there are exactly three simple C[S3]-modules, two of C-dimension 1 and one of C-dimension 2.
Which are these simple C[S3]-modules?

• S0 = C, with σx = x for all x ∈ C, σ ∈ S3

• S1 = C, with σx = ε(σ)x for all x ∈ C, σ ∈ S3 and ε : S3 → {±1} the sign homomorphism.

• We consider Ce1⊕Ce2⊕Ce3, σ(ei) = eσ(i) for all σ ∈ S3. Hence, σ(e1+e2+e3) = e1+e2+e3
for all σ ∈ S3. Now we take S2 = {(x1, x2, x3) ∈ C3 : x1+x2+x3 = 0}. Then dimC(S0) = 2.
Since C[S3] is semisimple, S2 is in any case a direct sum of simple modules. Hence, either
S2 is simple, or S2 is a direct sum of one-dimensional modules and we have the following
options: S2

∼= S0 ⊕ S0, S0 ⊕ S1 and S1 ⊕ S1. On all these three modules A3 acts as the
identity map. Since A3 do not act trivially on S2, S2 is simple.

If k is a field and G is a group, then the map

Hom(G, k∗) −→ {k[G]-modules of k-dimension 1}/ ∼=k[G]

χ 7−→ kχ = (k with G-action σ(x) = χ(σ)x, for σ ∈ G and x ∈ k)

is a bijection, because the map S 7→ (χ : G → Autk(S) ∼= k∗) is the inverse. Hom(G, k∗) is a
group. The corresponding group structure on the right side is given by ⊗. Hence, it holds that
k[G] ∼=

∏t
i=1M(ni, k), with #{i : ni = 1} = #Hom(G, k∗).
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Example. Let k = k̄, char k = 0 and G be a finite abelian group. Then k[G] ∼=
∏t
i=1M(ni, k)

and
∏t
i=1M(ni, k) is therefore commutative, that is ni are equal to 1. We know that

∑t
i=1 n

2
i =

#G. Hence, t = #G = #Hom(G, k∗).
If G = V4 = {1, σ, τ, στ}, then the matrix

1 σ τ στ

1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

gives the four homomorphisms G→ k∗. Hence, there are exactly four simple k[V4]-modules, all
of dimension 1.

Theorem 9.15. Let k = k̄, char k = 0 and #G < ∞. Then #{i : ni = 1} = #Hom(G, k∗) =
#G/[G,G].

Proof. We have the following diagram.

G k∗

G/[G,G] = Gab .

Any homomorphism G→ k∗ factors through [G,G], because k∗ is commutative and the image of
all commutators is 1. Hence, Hom(Gab, k∗)

∼
−→ Hom(G, k∗). As in the example above it follows

that t = #G/[G,G].

Example. C[D4], D4 = 〈ρ, σ〉 with σρσ−1 = ρ−1 and σ2 = ρ4 = 1. Then #D4 = 8.
Hence,

∑t
i=1 n

2
i = 8, #{i : ni = 1} = #D4/[D4, D4] = 4, because [D4, D4] = 〈ρ2〉. We get

n1 = n2 = n3 = n4 = 1, n5 = 2 and t = 5. Since D4 maps surjectively onto Dab
4
∼= V4, the

1-dimensional representations are the representations of V4. Furthermore, k2 with ρ and σ acting
as

ρ =

(
0 −1
1 0

)

, σ =

(
1 0
0 −1

)

is a 2-dimensional representation. Note that ρ2 acts nontrivially as −1 and therefore this repre-
sentation is irreducible.

Theorem 9.16. Let k an algebraically closed field and G be a finite group with char k 6 |#G.
Then the number of isomorphism classes of simple k[G]-modules is equal to the number of con-
jugacy classes of G.

Proof. k[G] ∼=
∏t
i=1M(ni, k). Hence, Z(k[G]) ∼= Z(

∏t
i=1M(ni, k)) =

∏t
i=1 Z(M(ni, k)) =
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∏t
i=1 k. Let a ∈ Z(k[G]), a =

∑

σ∈G aσσ with aσ ∈ k. Then

a ∈ Z(k[G]) ⇔ ∀b ∈ k[G] : ab = ba

⇔ ∀τ ∈ G : a = τaτ−1

⇔ ∀τ ∈ G :
∑

σ∈G

aσσ =
∑

ρ∈G

aτ−1ρτρ

⇔ ∀σ, τ ∈ G : aσ = aτ−1στ

⇔ a is of the form
∑

C∈G/∼

aC(
∑

σ∈C

σ),

whereG/∼ denotes the set of coniugacy classes ofG. Therefore, {
∑

σ∈C σ : C ∈ G/∼} is a k-basis

for Z(k[G]). If compare dimensions in the equality Z(k[G]) ∼=
∏t
i=1 k, we find #(G/∼) = t.

Example.

• G = S3, n1 = n2 = 1, n3 = 2, t = 3

• G abelian, t = #G

• G = D4, t = 5, the conjugacy classes are {1}, {ρ, ρ−1}, {σ, σρ2}, {σρ, σρ3} and {ρ2}.



Chapter 10

Traces and characters

In this chapter k is an algebraically closed field of characteristic 0 and G is a finite group.

Definition 10.1 (Representation ring). The Grothendieck group of the finite generated k[G]-
modules is called representation ring R(G) = Rk(G) of G.

Definition 10.2 (Character). LetM be a finite generated k[G]-module with k-basis {e1, . . . , em}.
Define for a σ ∈ G the matrix Aσ = (aij) with aij given by σei =

∑m
j=1 aijej. The character

associated to M is the function

χ
M = TrM : G −→ k

σ 7−→ Tr(Aσ).

Moreover, χM (1) is the dimension of the character χM and χM⊕N = χ
M + χ

N .
Example. If χ : G→ k∗ is a group homomorphism, we have a 1-dimensional k[G]-module via
kχ = k as a k-vector space and σx = χ(σ)x for σ ∈ G, x ∈ kχ. It follows that χ

kχ
= χ.

Note that group homomorphisms G → k∗ are also called characters. Definition 10.2 is a
general definition.

Definition 10.3 (Class function or central function). A function f : G → k is a class function
or a central function if ∀σ, τ ∈ G : f(στ) = f(τσ), that is ∀σ, ρ ∈ G : f(σρσ−1) = f(ρ), which is
equivalent to require that f is constant on every conjugacy class of G

The vector space of class functions is denoted by kG/∼ ⊂ kG. Here G/∼, also indicated by
Γ, is the set of conjugacy classes of G.

Proposition 10.4. Characters are class functions.

Proof. Let TrM be a character. Then for all σ, τ ∈ G we have TrM (στ) = TrM (τσ). It follows
from linear algebra that Tr(AB) = Tr(BA) for matrices A and B.

The map

C := {finitely generated k[G]-modules} −→ kG/∼

M 7−→ χ
M

is additive. Indeed, if the sequence 0 → M → L → N → 0 is exact, then it splits and L is
isomorphic to M ⊕N . It also holds that χL = χ

M + χ
N .

The universal property of the representation ring of G gives a unique group homomorphism
R(G)→ kG/∼ such that [M ] maps to χM .

50
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C Rk(G)

kG/∼

[ ]

M 7→ χ
M

[M ] 7→ χ
M

.

Lemma 10.5. It holds that χM⊗kN
= χ

M
χ
N , where χ

M
χ
N is defined by (χMχN )(σ) =

χ
M (σ)χN (σ) for σ ∈ G.

Proof. Exercise.

If M ∼=
⊕

S S
nS , then χ

M =
∑

S nSχS . Therefore, we may consider χS for all simple k[G]-
modules S insted of χM for all k[G]-modules.

Definition 10.6 (Character table). The character table of G is the matrix
[
χ
S(σ)

]

S∈S
σ∈G/∼.

Here S runs over S = {simple k[G]-modules}/ ∼=.

Example. We want to compute the character table of G = S3 We already know that G/∼ =
{1, (1 2), (1 2 3)}, S = {1, ε, S2}. The simple k[G]-modules 1 and ε are 1-dimensional k-vector
spaces where G acts as the identity and as the sign homomorphism, respectively. S2 is the
2-dimensional simple k[G]-module.

For all σ ∈ G we have χ1(σ) = 1. For S ∈ S we also know that χS(1) = dimk(S). The other
values in the character table are easily computed.

S\σ 1 (1 2) (1 2 3)
1 1 1 1
ε 1 −1 1
S2 2 0 −1

Theorem 10.7. The matrix
[
χ
S(σ)

]

S∈S
σ∈G/∼

is invertible.

Proof. We have already seen that k[G] ∼=
∏

S∈S Endk(S). This means that there is an isomor-

phism ϕ : Z(k[G])
∼
−→

∏

S∈S k. It has also been proven that {
∑

σ∈C σ : C ∈ G/∼} is a k-basis
for Z(k[G]). Let eC be the C-th basis vector, that is eC :=

∑

σ∈C σ for C ∈ G/∼.
The S-th component of ϕ(eC) is α ∈ k if eC acts on S as the multiplication by α. Then

α =
1

dimk(S)
Tr(action of eC on S)

=
1

dimk(S)

∑

σ∈C

χ
S(σ)

=
#C

dimk(S)
χ
S(σ) for σ in C.

The map ϕ in the given basis is represented by the matrix
[

#[σ]

dimk(S)
χ
S(σ)

]

S∈S
σ∈G/∼.

This matrix is invertible, because ϕ is an isomorphism. Since #[σ] 6= 0, we get that
[
χ
S(σ)

]

S∈S
σ∈G/∼

is invertible.
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Corollary 10.8. The ring homomorphism

ψ : R(G) −→ kG/∼

[M ] 7−→ χ
M

is injective and induces a ring isomorphism ψ′ : R(G) ⊗Z k
∼
−→ kG/∼.

Proof. It is known that R(G) ∼=
⊕

S Z · [S]. Let [M ] =
∑

S nS · [S] ∈ R(G). Then ψ([M ]) =
∑

S nSχS . By Theorem 10.7 χS for S ∈ S are linearly independent over k. Hence, if
∑

S nSχS =
0, all nS are equal to 0 (here we need that char k = 0) and ψ is injective.

Since {[S] : S ∈ S} is a Z-basis of R(G), {[S] ⊗ 1 : S ∈ S} is a k-basis of R/G ⊗Z k. The
character table of G gives the matrix representation for ψ′ and it is invertible. It follows that ψ′

is an isomorphism.

Corollary 10.9. Every class function f : G → k is a unique k-linear combination of the χS,
where S runs over S.

Definition 10.10 (Irreducible character). If S ∈ S, the character χS is an irreducible character.
The set of irreducible characters of G is denoted by X(G). Note that X(G) ∼= S.

Consider the following commutative diagram:

C/∼= Rk(G) ∼=
⊕

S Z · [S]

kG/∼

[ ]

M 7→ χ
M [M ] 7→ χ

M

.

We map k[G] ∈ C in two ways to kG/∼.
Since k[G] ∼=k[G]

∏

S Endk(S), k[G] ∼=
⊕

S S
dimk S as a k[G]-module. Hence, [k[G]] =

∑

S(dimk S)[S]. It follows that χk[G] =
∑

χ∈X(G) χ(1)χ.

The matrix which represents the map k[G] → k[G] given by left multiplication by σ in the
basis of all τ ∈ G is [mρ,τ ]ρ,τ , with mρ,τ = 1 if ρ = στ and otherwise mρ,τ = 0. The trace of this
matrix is #G if σ = 1 and otherwise 0. This gives

χ
k[G](σ) =

{

#G if σ = 1

0 if σ 6= 1.

The result is that for all σ ∈ G

∑

χ∈X(G)

χ(1)χ(σ) =

{

#G if σ = 1

0 if σ 6= 1.

Example. Let G = D4 = 〈ρ, σ : σ2 = ρ4 = 1, σρσ−1 = ρ−1〉. We have already seen that
Dab

4 = D4/〈ρ
2〉 = V4. By a previous example we know that the simple k[D4]-modules are four

1-dimensional modules (S0, S1, S2, S3) and one 2-dimensional module (S4).

1 σ ρ σρ ρ2

S0 1 1 1 1 1
S1 1 1 −1 −1 1
S2 1 −1 1 −1 1
S3 1 −1 −1 1 1
S4 2 0 0 0 −2
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Theorem 10.11. Let M be a finitely generated k[G]-module and let σ ∈ G. Then χ
M (σ) is a

sum of dimk(M) roots of unity whose orders divide the order of σ.

Proof. Firstly, consider the case with G abelian and M simple. Then dimk(M) = 1 and M = kχ
for a group homomorphism χ : G→ k∗. Since G is finite, there is a natural number m such that
σm = 1. We also have that χM (σ)m = 1 and therefore χM (σ) is a root of unity whose order
divides m.

Now we consider the case G abelian and M not necessarily simple. Then M =
⊕t

i=1 Si with

Si simple and t = dimk(M) and χM (σ) =
∑t

i=1
χ
Si

(σ). We are again in the first case if we look
at χSi

(σ).
The general case follows from the other cases. Indeed, consider M as a k[〈σ〉]-module. The

traces do not change.

From now on k = C and G is a finite group.

Theorem 10.12. Let M be a finitely generated k[G]-module and let σ ∈ G. Then χ
M†(σ) =

χ
M (σ), where is the complex conjugation.

Proof. As in the proof of Theorem 10.11 we may reduce to the case where G is abelian and M
is simple. Then again M = kχ for a group homomorphism χ : G→ k∗.

Let f ∈ M †. Then (σf)(x) = f(χ(σ)−1x) = χ(σ)−1f(x) for x ∈ M . Hence, σf = χ(σ)−1f
and (kχ)† = kχ−1 . Since χM (σ) is a root of unity, we have χM†(σ) = χ

M (σ)−1 = χ
M (σ).

In conlusion, if we define

: kG/∼ −→ kG/∼

f 7−→ (σ 7→ f(σ)),

then is a ring homomorphism of order 2 and the following diagram commutes.

C/∼= Rk(G)

kG/∼

C/∼= Rk(G)

kG/∼

M 7→M† [M ] 7→[M ]

f 7→f

.

Example. Let G = C3 ⋊ C4, where C3 = 〈τ〉, C4 = 〈σ〉 and στσ−1 = τ−1. The conjugacy
classes of G are {1}, {τ, τ2}, {σ, στ, στ2}, {σ2}, {σ2τ}, {σ3, σ3τ, σ3τ2}.

Note that the number of elements in the conjugacy class of x ∈ G is equal to #G/#CG(x).
Here CG(x) := {y ∈ G : xy = yx} is the centralizer of x.

Gab = 〈σ〉. Thus, we need to write #G = 12 as a sum of six squares, where four of them
are equal to 1: 12 = 12 + 12 + 12 + 12 + 22 + 22. Hence, there are four 1-dimensional simple
module and two 2-dimensional ones. Since G/〈σ2〉 ∼= C3 ⋊ C2

∼= S3, the simple S3-modules are
also simple g-modules.
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1 τ σ σ2 σ2τ σ3

1 1 1 1 1 1
1 1 i −1 −1 −i
1 1 −1 1 1 −1
1 1 −i −1 −1 i
2 −1 0 2 −1 0
2 −1 0 −2 1 0

Let M and N be k[G]-modules. Then Homk[G](M,N) is a k-vector space. This induces a
bilinear map

R(G)×R(G) −→ Z

([M ], [N ]) 7−→ dimk Homk[G](M,N).

The k-linear homomorphisms Homk(M,N) are a k[G]-module via the action (σf) : x 7→
σ(f(σ−1x)) of σ ∈ G on f ∈ Homk(M,N). This gives a map

C/∼=× C/∼= −→ C/∼=

(M,N) 7−→ Homk(M,N).

Lemma 10.13. Let R be a commutative rinf and let M and N be R-modules. Assume that M
is finitely generated and free, that is M ∼=R R

n. Then the map

Homk(M,R)⊗R N −→ HomR(M,N)

f ⊗ y 7−→ (x 7→ f(x)y)

is an isomorphism of R-modules.

Proof. Exercise.

Corollary 10.14. If M and N are two finitely generated k[G]-modules, then Homk(M,N) ∼=k[G]

M † ⊗k N .

Proof. Lemma 10.13 gives a k-linear isomorphism. It also respects the G-action.

Corollary 10.15. The following diagram commutes.

C/∼=× C/∼= R(G)×R(G)

kG/∼ × kG/∼

C/∼= R(G)

kG/∼

Homk(−,−) (x,y) 7→xy

(f,g) 7→fg

.

Lemma 10.16. If we consider k as a k[G]-module where G acts trivially on k, then

Homk(k,N) −→ N

f 7−→ f(1)
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is a k[G]-linear isomorphism and

Homk[G](k,N) −→ NG = {y ∈ N : ∀σ ∈ G : σy = y}

f 7−→ f(1)

is a k-linear isomorphism. Moreover, dimkN
G = 1

#G

∑

σ∈G
χ
N (σ).

Proof. The given maps are well-defined isomorphism.
Define ϕ =

∑

σ∈G(#G)−1σ ∈ k[G]. Then for all τ ∈ G we have τϕ = ϕ. Show that ϕ induces

an exact sequence 0 → kerϕ → N
ϕ
→ NG → 0 of k-modules and that the inclusion NG ⊂ N

gives a splitting of this sequence.
This means that N ∼=k N

G⊕kerϕ. Since ϕ acts on NG as the identity and on kerϕ as 0, the
trace of the action of ϕ on N is equal to dimkN

G. By definition of ϕ it follows that the trace of
the action of ϕ on N is also equal to 1

#G

∑

σ∈G
χ
N(σ).

Theorem 10.17. If M and N are finitely generated k[G]-modules, then

dimk Homk[G](M,N) =
1

#G

∑

σ∈G

χ
M (σ)χN (σ).

Proof. By Lemma 10.16 we have

(Homk(M,N))G = {f ∈ Homk(M,N) : ∀σ ∈ G : σf = f} = Homk[G](M,N).

It follows that

dimk Homk[G](M,N) =
1

#G

∑

σ∈G

χ
Homk(M,N)(σ) =

1

#G

∑

σ∈G

χ
M (σ)χN (σ).

We define 〈[M ], [N ]〉 = 1
#G

∑

σ∈G
χ
M (σ)χN (σ). By Theorem 10.17 it follows that the bilinear

map R(G)×R(G)→ Z can be written as

R(G) ×R(G) −→ Z

([M ], [N ]) 7−→ dimk Homk[G](M,N) = 〈[M ], [N ]〉.

If we define for f, g ∈ kG/∼, in an analogous way, 〈f, g〉 = 1
#G

∑

σ∈G f(σ)g(σ), we get the
following commutative diagram:

R(G)×R(G) Z

kG/∼ × kG/∼ k.

〈−,−〉

〈−,−〉

Note that if S and S′ are simple modules, 〈[S], [S′]〉 is equal to 1 if [S] = [S′] and to 0
otherwise. It is also true for irreducible characters χ and ψ that 〈χ, ψ〉 is equal to 1 if χ = ψ and
to 0 otherwise.

If M =
∑

S∈S nS [S] with nS ∈ Z, nS ≥ 0, then 〈[M ], [M ]〉 =
∑

S n
2
S . Hence, if M is a

finitely generated k[G]-module, M is irreducible if and only if 〈[M ], [M ]〉 = 1, that is if and only
if 〈χM , χM 〉 = 1.
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Lemma 10.18. Let f ∈ kG/∼. There is a finitely generated k[G]-module M with f = χ
M if and

only if ∀χ ∈ X(G) : 〈f, χ〉 ∈ Z≥0.

Proof. Write f =
∑

χ∈X(G) aχχ, with aχ ∈ k. Then for all ψ ∈ X(G) we have 〈f, ψ〉 =
∑

χ aχ〈χ, ψ〉 = aψ.

Now suppose that ∀ψ ∈ X(G) : 〈f, ψ〉 ∈ Z≥0 and define M :=
⊕

S∈S S
〈f,χS 〉. Thus,

χ
M =

∑

S〈f, χS〉χS = f .
Conversely, if M =

⊕

S S
nS , then χM =

∑

S nSχS =
∑

S〈f, χS〉χS .

Theorem 10.19. For σ, τ ∈ G

∑

χ∈X(G)

χ(σ)χ(τ) =

{
#G
#[σ] = #CG(σ) if σ ∼ τ

0 if σ 6∼ τ .

Proof. Define A = [χ(σ)]χ∈X(G)
σ∈G/∼

and B = [χ(σ)
√

#[σ]]χ∈X(G)
σ∈G/∼

.

Then

BBT =




∑

σ∈G/∼

#[σ]χ(σ)ψ(σ)





χ,ψ∈X(G)

= #G · I,

because all elements outside the diagonal are zero and the element on the diagonal are #[σ].

Note that it follows that |detA|
2

=
∏

σ∈G/∼
#G
#[σ] =

∏

σ #CG(σ).

Now we know that B−1 = 1
#GB

T , and therefore BTB = #G · I.
Thus,

#G · I = BTB =




∑

χ∈X(G)

√

#[σ]#[τ ]χ(σ)χ(τ)





σ,τ∈G/∼

=




√

#[σ]#[τ ]
∑

χ∈X(G)

χ(σ)χ(τ)





σ,τ∈G/∼.

The elements on the diagonal are #[σ] and the element outside the diagonal are 0. This proves
the theorem.



Chapter 11

Integrality and Burnside’s

theorem

Lemma 11.1. Let A be a commutative ring, M be a finitely generated A-module and ε ∈
EndA(M). Then there is a monic polynomial f ∈ A[X ] such that f(ε) = 0, that is, if f =
∑
aiX

i,
∑
aiε

i(m) = 0 for all m ∈M .

Proof. We may give M an A[X ]-module structure via (
∑
biX

i) ·m =
∑
biε

i(m) for
∑
biX

i ∈
A[X ] and m ∈M .

Write M =
∑n
i=1 Ami for m1, . . . ,mn ∈M .

Claim. For all l ∈ {0, 1, . . . , n} there exists a monic polynomial f ∈ A[X ] such that for all
m ∈M there exist g1, . . . , gl ∈ A[X ] with deg gi < deg f and f ·m =

∑
gimi.

Proof of the claim. If l = n, take f = X . Then X ·m = ε(m) =
∑
bimi. Thus, take gi = bi.

Suppose the claim is true for l > 0. We prove that is also true for voor l − 1.
There are f and hi such that f ·ml =

∑l
i=1 hi ·mi with hi ∈ A[X ] and deg hi < deg f .

Hence, (f − hl) · ml =
∑l−1

i=1 hi · mi. Note that f − hl is a monic polynomial of the same
degree of f .

Now letm an arbitrary element ofM . We know that there are gi such that f ·m =
∑l

i=1 gi·mi.
Then

(f − hl)f ·m =

(
l−1∑

i=1

(f − hl)gi ·mi

)

+ gl(f − hl) ·ml

=

(
l−1∑

i=1

(f − hl)gi ·mi

)

+

(
l−1∑

i=1

glhi ·mi

)

=

l−1∑

i=1

((f − hl)gi + glhi) ·mi.

For f ′ := (f − hl)f and g′i := (f − hl)gi + glhi the claim is true for l − 1.
It follows that the claim holds for l = 0 and this proves the lemma.

Definition 11.2 (Faithful module). An R-module M is a faithful module if for all r ∈ R \ {0}
there exists m ∈ M such that rm 6= 0. In other words, it is faithful if the map R → EndZ(M)
given by r 7→ (m 7→ rm) is injective.

57
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Theorem 11.3. Let A ⊂ B be commutative rings and let α ∈ B. Then the following facts are
equivalent.

1. There is a monic polynomial f ∈ A[X ] with f(α) = 0.

2. The subring ring A[α] ⊂ B is finitely generated as an A-module.

3. There is a subring C ⊂ B with A ⊂ C, α ∈ C and C is finitely generated as A-module.

4. There is a faithful A[α]-module M such that it is finitely generated as an A-module.

Definition. An element α which satisfies all these properties is integral over A.

Proof. (1) ⇒ (2). Suppose that f = Xn +
∑n−1
i=0 aiX

i ∈ A[X ] is such that f(α) = 0. Define

C :=
∑n−1

i=0 α
iA. Then αn ∈ C ⊂ A[α]. Note that C is a finitely generated A-module.

Since α− αj ∈ C for 0 ≤ j ≤ n− 1, αC ⊂ C. Thus, for all j ≥ 0 we have αjC ⊂ C, that is
A[α]C ⊂ C and A[α] = C. In particular, A[α] is finitely generated as an A-module.

(2)⇒ (3): Take C = A[α].
(3)⇒ (4): Take M = C. A[α] ⊂ C. Thus, C is an A[α]-module. Let r ∈ A[α], r 6= 0. Then

1r 6= 0, and therefore M is faithful.
(4)⇒ (1): Apply Lemma 11.1 with ε : m 7→ αm. Then there is a monic polynomial f ∈ A[X ]

such that (m 7→ f(α)m) = 0. Since M is faithful, we get f(α) = 0.

Let A ⊂ B be commutative rings.

Definition 11.4 (Integral). B is integral over A if every element of B is integral over A.

Definition 11.5 (Integrally closed). A is integrally closed in B if every element α ∈ B \ A is
not integral over A.

Theorem 11.6. Let A be a unique factorization domain. Then A is integrally closed.

Proof. Suppose that α ∈ Q(A) is integral over A. Write a = u
v with u, v ∈ A such that u and v

do not have common prime factors.
Choose ai ∈ A such that αn+an−1α

n−1+. . .+a0 = 0. Then an−1u
n−1v+an−2

n−2v
2+. . .+a0v

n =
−un. Thus, v|un. It follows that v ∈ A∗ and α ∈ A.

Lemma 11.7. If A ⊂ C are rings such that C is finitely generated as an A-module and M is a
finitely generated C-module, then M is also finitely generated as an A-module.

Proof. Since C is finitely generated as an A-module, there exist an n ∈ Z>0 and a surjective
A-linear homomorphismAn → C. There are also anm ∈ Z>0 and a surjective C-linear homomor-
phism Cm →M . Thus, there exists a surjective A-linear homomorphism Anm → Cm →M .

Theorem 11.8. Let A ⊂ B be commutative rings. Then the integral closure of A in B is a
subring of B, contains A and is integrally closed in B.

Proof. Define D := {α ∈ B : α is integral over A}, the integral closure of A in B. It is clear that
A ⊂ D.

We want to prove that if α, β ∈ D, then also αβ, α− β ∈ D. Let α and β arbitrary elements
of D. Since α is integral over A, A[α] is a finitely generated A-module. Since β is integral over
A, β is also integral over A[α]. Thus, A[α][β] = A[α, β] is a finitely generated A[α]-module.
Applying Lemma 11.7 with C = A[α], M = A[α, β], we find that A[α, β] is finitely generated as
an A-module. It is clear that αβ and α−β are contained in A[α, β]. By Theorem 11.3 it follows
that αβ and α− β are integral over A and therefore they are in D.
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We still need to prove that, if β ∈ B is integral overD, then β ∈ D. Let β ∈ B be any integral
element overD. Then there exist a monic polynomial g = Xt+αt−1X

t−1+. . .+α1X+α0 ∈ D[X ]
such that g(β) = 0. Now we have the following chain of rings: A ⊂ A[α0] ⊂ A[α0, α1] ⊂ . . . ⊂
A[α0, α1, . . . , αt−1] =: D′. Every ring different from A in this chain is finitely generated as a
module over the previous one, because the new αi is integral over A and therefore also over
A[α0, . . . , αi−1]. By Lemma 11.7 D′ is finitely generated as an A-module. Since β is integral
over D, it is integral over D′ and D′[β] is finitely generated as a D′-module. Applying again
Theorem 11.3 with C = D′[β], we get that β is integral over A.

Notation. We denote the integral closure of Z in C by Z. Suppose that a, b ∈ C. We write
b|a (“b divides a”) if a ∈ Zb.

Note that Z ∩Q = Z. If c|b and b|a, then c|a. If b|a1 and b|a2, then b|a1 ± a2.
Let G be a finite group.

Theorem 11.9. If M is a finitely generated C[G]-module, then χM (σ) ∈ Z for all σ ∈ G.

Proof. Let n = dimCM . Then χM (σ) is a sum of n roots of unity. Every root of unity is a zero

of a polynomial of the form Xm − 1. Hence, every root of unity belongs to Z. It follows that
χ
M (σ) ∈ Z.

Example. i ∈ Z, because i is a root of unity.
i
2 6∈ Z, because, if i

2 belonged to Z, then (−i) i2 = 1
2 would also belong to Z. Since Z∩Q = Z,

this is not the case.
Example. If α ∈ C is algebraic over Q, then α ∈ Z⇔ fαQ ∈ Z[X ].

Proof. ⇐: Clear. ⇒: Exercise.

Lemma 11.10. Let t ∈ Z>0 and let η1, . . . , ηt ∈ C be roots of unity. Write s = η1 + . . .+ ηt and
suppose that s 6= 0. Then the following facts are equivalent.

1. t|s.

2. All ηi are equal.

3. |s| = t.

4. |s| ≥ t.

Proof. (2) ⇒ (1). Trivial: s
t = η1 ∈ Z.

(4) ⇒ (3) ⇒ (2). If a, b ∈ C, then |a + b| ≤ |a| + |b|. The equality holds if and only if
R>0 · a = R>0 · b, that is the vector from 0 to a has the same direction as the vector from 0 to b.
Similarly, for a1, . . . , at ∈ C∗ we have |

∑t
i=1 ai| ≤

∑t
i=1 |ai| abd the equality holds if and only if

all vectors from 0 to ai have the same direction.
We apply this with ai = ηi. For i = 1, . . . , t we know that ηi is a root of unity and therefore

|ηi| = 1. It follows that |s| = |
∑t

i=1 ηi| ≤
∑t

i=1 |ηi| = t and |s| = t if and only if all vectors from
0 to ηi are equal, that is all ηi are equal.

Assertion (4) states that |s| ≥ t. Hence, we find that |s| = t (Assertion (3)) and therefore
η1 = . . . = ηt (Assertion (2)).

(1) ⇒ (4): The following most obvious “proof” is wrong and therefore it is not a proof. If
t|s then s

t ∈ Z. Thus,
∣
∣ s
t

∣
∣ ≥ 1 and |s| ≥ t. The mistake is the “thus” written in italic, because it

is not true that every element of Z different from 0 has absolute value ≥ 1. Even sums of roots
of unity can have absolute value ≥ 1, for instance |ζ5 + ζ4

5 | < 1 where ζ5 = e
2π
5 ).
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Define K = Q(η1, . . . , ηt). It is clear that s =
∑t
i=1 ηi ∈ K. K is Galois over Q with Galois

group Gal(K/Q). For σ ∈ Gal(K/Q) we have σ(s) =
∑t

i=1 σ(ηi), where σ(ηi) is again a root of
unity for all i. Thus, 0 < |σ(s)| ≤ t.

Since s
t is integral over Z, σ( st ) = σ(s)

t is also integral over Z. Then
∏

σ∈Gal(K/Q)
σ(s)
t ∈ Z. We

also know that
∏

σ∈Gal(K/Q)
σ(s)
t ∈ Q, because for all τ ∈ Gal(K/Q) it holds that τ

(
∏

σ
σ(s)
t

)

=
∏

σ
σ(s)
t . Since s 6= 0, σ(s) 6= 0 and we find 0 6=

∏

σ∈Gal(K/Q)
σ(s)
t ∈ Z ∩ Q = Z. Hence,

∣
∣
∣
∏

σ∈Gal(K/Q)
σ(s)
t

∣
∣
∣ ≥ 1 and

∣
∣s
t

∣
∣ =

∏

σ 6=1

∣
∣
∣
t

σ(s)

∣
∣
∣ ≥ 1.

Theorem 11.11. Let G be a finite group, M be a finitely generated C[G]-module and let σ ∈ G.
An element τ ∈ G acts as a scalar on M if ∃c ∈ C : ∀x ∈ M : σ(x) = cx. The following
equivalences are true.

1. σ acts trivially on M ⇐⇒ χ
M (σ) = dimCM .

2. σ acts as a scalar on M ⇐⇒ |χM (σ)| = dimC M . If M 6= 0, this is equivalent to
dimC M |χM (σ).

Proof. We may assume that G = 〈σ〉, so, in particular, we may assume that G is abelian. Then
M is a direct sum of 1-dimensional C[G]-modules and σ acts as the matrix









η1 0 . . . 0

0 η2
. . .

...
...

. . .
. . . 0

0 . . . 0 ηt









,

where η1, . . . , ηt are roots of unity and t = dimC M .
1. ⇒: Trivial.
⇐: From χ

M (σ) = dimC M it follows that η1 + . . . + ηt = t. Lemma 11.10 gives η1 = . . . =
ηt = 1. Hence, σ acts trivially as the identity matrix. Note that (1) holds even if M = 0.

2. Note that the first equivalence holds if M = 0. Suppose that M 6= 0.
⇒. If σ acts as c, then c is a root of unity. Thus,χ

M
(σ) = ct, dus |χ

M
(c)| = |ct| = t.

⇐: |η1 + . . .+ ηt| = t. Lemma 11.10 says that all ηi are equal. Then σ acts as a multiple of
the identity matrix.

The proof of the second equivalence is the same by using the first statement in Lemma
11.10.

Define the set N := ker(G→ AutC M) of elements of G which act trivially on M and the set
H := ker(G→ (AutC M)/C∗) of elements of G which act on M as a scalar. The situation is the
following: N ⊂ H ⊂ G and both N and H are normal in G.

Definition 11.12. For a C[G]-module M and u ∈ C[G], χM (u) is the trace of the action of u
on M . Thus, χM : C[G]→ C is C-linear.

Lemma 11.13. Let A ⊂ B1 and A ⊂ B2 be commutative rings and embed A in B1 × B2 via
a 7→ (a, a). Then an element (b1, b2) ∈ B1 × B2 is integral over A if and only if both b1 and b2
are integral over A.

Proof. Exercise.
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Theorem 11.14. Let G be a finite group and let u ∈ Z(C[G]). Then

u ∈ Z[G] =⇒ u is integral over Z

⇐⇒ for all χ ∈ X(G) it holds that χ(1)|χ(u).

Proof. ⇒. Define B := Z[G] ∩ Z(C[G]) =
⊕

C∈G/∼ Z
∑

σ∈G σ. B is finitely generated as a

Z-module and therefore every element of B is integral over Z. Since Z is integral over Z, B is
also integral over Z.
⇔. The integral closure of Z in Z(C[G]) is isomorphic to the integral closure of Z in

∏

χ C

under the isomorphism given by u 7→
(
χ(u)
χ(1)

)

χ∈X(G)
. By Lemma 11.13 the integral closure of Z

in
∏

χ C is equal to
∏

χ Z. Thus, u is integral over Z ⇔ ∀χ ∈ X(G) : χ(u)
χ(1) ∈ Z.

Theorem 11.15. For every χ ∈ X(G) it holds that χ(1)|#G.

Proof. Take u =
∑

σ∈G χ(σ−1)σ ∈ C[G]. We have χ(σ−1) = χ(τ−1) if σ ∼ τ . Thus, u ∈ Z(C[G]).

Since all χ(σ−1) ∈ Z, we get u ∈ Z[G]. By Theorem 11.14 it follows that χ(1)|χ(u). Moreover, we
know that χ(u) =

∑

σ∈G χ(σ)χ(σ). Since χ is an irreducible character, 1
#G

∑

σ∈G χ(σ)χ(σ) = 1.

Hence,
∑

σ∈G χ(σ)χ(σ) = #G and χ(1)|#G.

Theorem 11.16. For every χ ∈ X(G) and every σ ∈ G it holds that χ(1)|#[σ]χ(σ), where by
[σ] we mean the conjugacy class of σ.

Proof. Take u =
∑

τ∈G
τ∼σ

τ ∈ C[G]. We have u ∈ Z(C[G]) and u ∈ Z[G]. By Theorem 11.14 it

follows that χ(1)|χ(u) = #[σ]χ(σ).

Theorem 11.17. Suppose that χ ∈ X(G) and σ ∈ G satisfy ggd(χ(1),#[σ]) = 1. Then either
χ(σ) = 0 or σ acts as a scalar on the simple C[G]-module belonging to χ. In the latter case στ−1

acts as the identity on S for every τ ∈ G which is conjugated to σ.

Proof. Write χ = χ
S . Then χ(1) = dimC S = t. We have χ(1)|#[σ]χ(σ) and χ(1)|χ(1)χ(σ).

Since ggd(χ(1),#[σ]) = 1, there exist integer numbers l and m such that l#[σ] + mχ(1) = 1.
We know that χ(1)|l#[σ]χ(σ) and χ(1)|mχ(1)χ(σ). Thus, χ(1)|l#[σ]χ(σ) +mχ(1)χ(σ) = χ(σ)
and t = χ(1)|χ(σ). By Lemma 11.10 it follows that either χ(σ) = 0 or χ(σ) = tη, for a root of
unity η. In the second case σ acts as η. If τ is conjugated to σ, τ also acts as η. Hence, στ−1

acts as 1.

Theorem 11.18 (Burnside). Let G be a finite group and let σ ∈ G such that #[σ] = pm, with
p prime and m ∈ Z>0. Then the subgroup N = 〈στ−1 : τ ∈ [σ]〉 is a normal subgroup of G with
{1} ( N ( G.

Proof. If ρ ∈ G, then

ρστ−1ρ−1 = ρσρ−1σ−1σ(ρτρ−1)−1 = (σ(ρσρ−1)−1)−1σ(ρτρ−1)−1 ∈ N.

Thus,N is a normal subgroup andN 6= {1}, because #[σ] > 1. Since σ 6= 1,
∑

χ∈X(G) χ(1)χ(σ) =

0. Then
∑

χ∈X(G)
χ6=1

χ(1)χ(σ) = −1. Hence, the prime p is not a divisor of
∑

χ∈X(G)
χ6=1

χ(1)χ(σ).

Choose χ 6= 1 with p 6 |χ(1)χ(σ). There exists a simple C[G]-module S such that χ = χ
S . Since

χ 6= 1, χ acts nontrivially on S. We have that p 6 |χ(1) and therefore ggd(χ(1),#[σ]) = 1. From
p 6 |χ(1)χ(σ) it follows that χ(σ) 6= 0. Theorem 11.17 says that στ−1 acts as 1 on S for all τ ∈ [σ].
Hence, N acts trivially on S and N 6= G.
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Theorem 11.19 (“Burnside’s theorem” or “paqb-Theorem”). If G is a finite group and the
number of prime numbers which divide #G is at most two, then G is solvable.

Proof. We have already seen that this theorem is a corollary of Theorem 11.18.



Chapter 12

The restriction map and

Frobenius’ theorem

Let G1 and G2 be groups. Let ϕ : G1 → G2 be a group homomorphism. Then there is an
induced ring homomorphism

C[G1] −→ C[G2]

<∞∑

σ∈G1

aσσ 7−→

<∞∑

σ∈G1

aσϕ(σ) =
∑

τ∈G2




∑

σ∈ϕ−1(τ)

aσ



 τ.

Every C[G2]-module M becomes a C[G1]-module via the composite map G1
ϕ
−→ G2 −→

AutC M , or, equivalently, rx = ϕ(r)x for r ∈ C[G1], x ∈ M and ϕ the induced ring homomor-
phism. If confusion is possible, we denote the resulting C[G1]-module by ϕ∗M .

From now on we assume that the groups G1 and G2 are finite.
We have the following embeddings:

{f.g. C[G2]-modules}/∼=C[G2] →֒ RC(G2) →֒ RC(G2)⊗Z C ∼= CG2/∼

{f.g. C[G1]-modules}/∼=C[G1] →֒ RC(G1) →֒ RC(G1)⊗Z C ∼= CG1/∼.

By using ϕ we are going to construct induced vertical maps.
The group homomorphism ϕ : G1 → G2 induces a map

ϕ∗ : {f.g. C[G2]-modules}/∼=C[G2] −→ {f.g. C[G1]-modules}/∼=C[G1]

M 7−→ ϕ∗M.

If 0 → L → M → N → 0 is a short exact sequence of finitely generated k[G2]-modules, the
sequence 0 → ϕ∗L → ϕ∗M → ϕ∗N → 0 is a short exact sequence of finitely generated k[G1]-
modules. Thus, M 7→ [ϕ∗M ] ∈ RC(G1) is additive and there is a unique group homomorphism
ϕ∗ : RC(G2)→RC(G1) such that [M ] 7→ [ϕ∗M ].

If g ∈ CG2/∼, then g is a map G2/∼ → C. The homomorphism ϕ : G1 → G2 induces a map
ϕ/∼ : G1/∼ → G2/∼. Now we have a map

(ϕ/∼)∗ : CG2/∼ −→ CG1/∼

g 7−→ g ◦ (ϕ/∼).

63
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We also have the following vertical maps.
{f.g. C[G2]-modules}/∼=C[G2] →֒ RC(G2) →֒ RC(G2)⊗Z C ∼= CG2/∼



yϕ

∗



yϕ

∗



yϕ

∗⊗id



y(ϕ/∼)∗

{f.g. C[G1]-modules}/∼=C[G1] →֒ RC(G1) →֒ RC(G1)⊗Z C ∼= CG1/∼.
It is clear that the two squares on the left are commutative.

Lemma 12.1. The left square

RC(G2)⊗Z C CG2/∼

RC(G1)⊗Z C CG1/∼

∼

ψ1

∼

ψ2

ϕ∗⊗id (ϕ/∼)∗

is commutative.

Proof. Since χϕ∗M (σ) = χ
M (ϕ(σ)), we have χϕ∗M = χ

M ◦ϕ. Thus, ψ1(ϕ
∗⊗ idC) and (ϕ/∼)∗◦ψ2

concide on all elements of the form [M ] ⊗ 1. These elements span the C-vector space RC(G2).
Since the maps are C-linear, ψ1(ϕ

∗ ⊗ idC) and (ϕ/∼)∗ ◦ ψ2 conside on RC(G2).

Theorem 12.2. The maps ϕ∗ : RC(G2) → RC(G1), ϕ
∗ ⊗ id : RC(G2) ⊗Z C → RC(G1) ⊗Z C

and (ϕ/∼)∗ : CG2/∼ → CG1/∼ are ring homomorphisms.

Proof. We will prove the ring homomorphisms only for the first map and for the last one.
For the first map it is sufficient to show that, if M and N are finitely generated C[G2]-

modules, we have ϕ∗(M ⊗C N) ∼= ϕ∗M ⊗C ϕ∗N as C[G1]-modules. Firstly, ϕ∗(M ⊗C N) is
equal to M ⊗C N where G1 acts by σ(x ⊗ y) = ϕ(σ)(x ⊗ y) = (ϕ(σ)x) ⊗ (ϕ(σ)y). Moreover,
ϕ∗M ⊗C ϕ

∗N is equal to M ⊗CN where G1 acts by σ(x⊗ y) = σ(x)⊗σ(y) = (ϕ(σ)x)⊗ (ϕ(σ)y).
In general, if X and Y are sets and λ : X → Y is a map, the map

λ∗ : CY −→ CX

f 7−→ f ◦ λ

is a ring homomorphism. Here CY is a ring via (fg)(y) = f(y)g(y) for f, g ∈ CY and y ∈ Y .
If we apply this with X = G1/∼, Y = G2/∼, and λ = (ϕ/∼), we get that (ϕ/∼)∗ is a ring
homomorphism.

As we have seen before, we can define an involution on RC(Gi), RC(Gi)⊗Z C, and CGi/∼.

{f.g. C[G]-modules}/∼=C[G] →֒ RC(G) →֒ RC(G)⊗Z C ∼= CG/∼


yM 7→M†



y[M ] 7→[M ]



y(x⊗c) 7→(x†⊗c̄)



yf 7→ ◦f

{f.g. C[G]-modules}/∼=C[G] →֒ RC(G) →֒ RC(G)⊗Z C ∼= CG/∼.

Theorem 12.3. The three ring homomorphisms ϕ∗, ϕ∗ ⊗ idC and (ϕ/∼)∗ commute with the
involution .

Proof. We prove this only for (ϕ/∼)∗.
In general, if X and Y are sets and λ : X → Y is a map, the following diagram commutes.
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CY CY

CX CX

f 7→ ◦f

f 7→ ◦f

λ∗ λ∗

Indeed, ◦ (f ◦ λ) = ( ◦ f) ◦ λ.
Apply this with X = G1/∼, Y = G2/∼, and λ = (ϕ/∼).

Note that it follows that these three ring homomorphisms also respect the map (M,N) 7→
HomC(M,N). Indeed, HomC(M,N) ∼= M † ⊗C N .

We have also previously constructed the following commutative diagram.

({f.g. C[G]-modules}/∼=C[G])
2 →֒ (RC(G))2 →֒ (RC(G)⊗Z C)2 ∼= (CG/∼)2



yψ



yψ

′



y



y〈−,−〉

Z≥0 ⊂ Z ⊂ C = C

These are the vertical maps, from left to right:

ψ : (M,N) 7→ dimC HomC[G](M,N)

ψ′ : ([M ], [N ]) 7→ dimC HomC[G](M,N)

(x⊗ c, y ⊗ d) 7→ ψ′(x, y)cd̄

(f, g) 7→ 〈f, g〉

Theorem 12.4. If ϕ is surjective, then ϕ∗, ϕ∗ ⊗ idC, and (ϕ/∼)∗ respect the inner product of
the previous diagram. This means, for instance, that

∀x, y ∈ RC(G2) : ψ′(x, y) = ψ′(ϕ∗x, ϕ∗y)

∀f, g ∈ CG2/∼ : 〈f, g〉 = 〈(ϕ/∼)∗(f), (ϕ/∼)∗(g)〉.

Proof. We only have to prove that for finitely generated C[G2]-modules M and N we have
dimC HomC[G2](M,N) = dimC HomC[G1](ϕ

∗M,ϕ∗N).
In general, HomC[G2](M,N) ⊂ HomC[G1](ϕ

∗M,ϕ∗N). Since ϕ is surjective, the map C[G1] 7→
C[G2] induced by ϕ is also surjective. It follows that every C[G1]-linear map is also C[G2]-linear.
Thus, HomC[G2](M,N) = HomC[G1](ϕ

∗M,ϕ∗N). In particular, the dimensions are equal.

Let G be a finite group and H be a subgroup of G. We denote the inclusion map H → G by
i. The usual notation for i∗ is Res or ResGH and we call i∗ the restriction map. Applying what
we have seen above, we get the following commutative diagram.

{f.g. C[H ]-modules}/∼=C[H] →֒ RC(H) ⊂ RC(H)⊗Z C ∼= CH/∼
x

i∗

x

i∗

x

i

∗⊗id

x

(i/∼)∗

{f.g. C[G]-modules}/∼=C[G] →֒ RC(G) ⊂ RC(G)⊗Z C ∼= CG/∼.
Now we are going to prove Frobenius’ theorem by using the above diagram.

Theorem 12.5 (Frobenius’ theorem). Let G be a group which acts transitively on a finite set
X and let nσ = #{x ∈ X : σx = x} for σ ∈ G. If nσ ≤ 1 for all σ ∈ G and σ 6= 1, then
N = {1} ∪ {σ ∈ G : nσ = 0} is a normal subgroup of G with #N = #X.

Example. Let Fq be a finite field and H be a subgroup of F∗
q . Take X = Fq and G = {σ :

X → X : ∃a ∈ H, b ∈ Fq : ∀x ∈ Fq : σx = ax+ b}.
We have σ0 = b and σ1 = a. Thus, #G = q ·#H and then #G|(q − 1)q.
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In order to compute nσ, we have to determine the number of solutions of the equation
σx = ax+ b = x with a ∈ H and b ∈ Fq. This equality is equivalent to (a− 1)x = x. Hence,

nσ =







1 als a 6= 1
0 als a = 1, b = 0
q als σ = 1

.

If #X = 1, the theorem is easily seen to be true. From now on, suppose that #X = n > 1.
Let σ ∈ kerϕ, where ϕ is the map G → SymX = Sn given by τ 7→ (x 7→ τx). We have
nσ = #X > 1 and σ = 1. Hence, ϕ is injective and G is isomorphic to a subgroup of Sn. Thus,
G is finite.

Now fix y ∈ X and let H = {σ ∈ G : σy = y} be the stabilizer of y. The map τH 7→ τy is
an isomorphism G/H

∼
→ X . If τ, ρ ∈ G and τH 6= ρH , then τy 6= ρy. Thus, τHτ−1 ∩ ρHρ−1 =

{σ ∈ G : στy = τy} ∩ {σ ∈ G : σρy = ρy} = {1}. This is equivalent to the following statement:
If τ ∈ G, τ 6∈ H , then τHτ−1 ∩H = {1}. It is clear that the last statement follows from the
previous one if we take ρ = 1. Conversely, the former one follows from the latter one by noticing
that τH 6= ρH ⇔ ρ−1τH 6= H . From the second assertion we get (ρ−1τ)H(τ−1ρ) ∩H = {1}.
Therefore, τHτ−1 ∩ ρHρ−1 = {1}.

Hence, G \ {1} = (N \ {1}) ⊔
∐

τH∈G/H((τHτ−1) \ {1}). Let h = #H . Then #G =

#(G/H) ·#H = nh and it follows that nh− 1 = #N − 1 +n(h− 1). Thus, nh = #N +n(h− 1)
and #N = n = #X .

After these remarks we can reformulate Frobenius’ theorem.

Theorem 12.6 (Reformulation of Frobenius’ theorem). Let G be a finite group and H be a
subgroup of G of index n > 1. Suppose that τHτ−1 ∩H = {1} for all τ ∈ G with τ 6∈ H. Define
N = (G \

⋃

τH∈G/H(τHτ−1)) ∪ {1}. Then N is a normal subgroup of G with #N = n.

Motivation of the proof.

Suppose that N is normal. Then #G/N = h and the composite map H → G/N of the inclusion
map H → G and the projection map G → G/N is injective, because H ∩ N = {1}. Hence,
H ∼= G/N and there is a group homomorphism ϕ : G → H with ϕ|H = idH , that is ϕi = idH .
The idea of the proof is the following one: Construct vertical maps in the above diagram which
are one-sided inverses of the given vertical maps, going from right to left.

Proof. Let σ ∈ H , σ 6= 1. Then #[σ]H = #H
#CH(σ) and #[σ]G = #G

#CG(σ) . Let CH(σ) = {τ ∈ H :

στ = τσ} be the centralizer of σ in H . We define the centralizer CG(σ) in a similar way.
Let ρ ∈ CG(σ). Then ρσρ−1 = σ ∈ H ∩ ρHρ−1, H ∩ ρHρ−1 6= {1}, and ρ ∈ H . Thus,

CG(σ) = CH(σ). It follows that #[σ]G = #[σ]H · n. We see that [σ]G =
∐

τH∈G/H τ [σ]Hτ
−1

and [σ]G ∩H = [σ]H . The map i induces a bijection (H \ {1})/∼→ (G \N)/∼.
Now define the map ψ : G/∼ → H/∼ by

ψ([σ]G) =

{
[σ]H = [σ]G ∩H if σ ∈ H \ {1}
[1]H for σ ∈ N

.

Note that ψ ◦ (i/∼) = idH/∼.

Define ψ∗ : CH/∼ → CG/∼ by ψ∗(f) = f ◦ ψ. It is clear that ψ∗ is a ring homomorphism
with i∗ψ∗ = idCH/∼ .

Now define the map RC(H)⊗Z C→RC(G)⊗Z C by considering the isomorphism RC(G)⊗Z

C
∼
→ CG/∼, the map ψ : G/∼ → H/∼ and the isomorphism CH/∼

∼
→RC(H)⊗Z C.

We want to prove some properties of the map ψ∗.
Property 1. ψ∗ : CH/∼ → CG/∼ preserves inner products, that is fot all f, g ∈ CH/∼ it holds

that 〈f, g〉H = 〈ψ∗f, ψ∗g〉G.
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Proof.

〈ψ∗f, ψ∗g〉G =
1

#G

∑

σ∈G

ψ∗f(σ)ψ∗g(σ) =
1

#G

∑

[σ]G∈G/∼

#[σ]Gf(ψ([σ]G))g(ψ([σ]G))

=
1

#G

∑

C∈H/∼







∑

[σ]G∈G/∼
ψ([σ]G)=C

#[σ]G






f(C)g(C).

We have

∑

[σ]G∈G/∼
ψ([σ]G)=C

#[σ]G =

{
n ·#C if C 6= {1}
∑

[τ ]G∈G/∼
τ∈N

#[τ ]G = #N = n = n ·#C if C = 1 .

Thus, we get

〈ψ∗f, ψ∗g〉G =
n

#G

∑

C∈H/∼

#Cf(C)g(C) =
1

#H

∑

σ∈H

f(σ)g(σ) = 〈f, g〉H .

Property 2. For all f ∈ CH/∼ and g ∈ CG/∼ with f(1) = 0 it holds that 〈ψ∗f, g〉G = 〈f, i∗g〉H .
(Note that i∗g = h|H .)

Proof.

〈ψ∗f, g〉G =
1

#G

∑

[σ]∈G/∼

f(ψ(σ))g(σ)#[σ]G =
1

#G

∑

C∈H/∼

f(C)
∑

[σ]G∈G/∼
ψ([σ]G)=C

#[σ]Gg(σ)

=
1

#G

∑

C∈H/∼
C 6={1}

f(C)n#Cg(C) =
1

#G

∑

C∈H/∼

f(C)n#Cg(C)

=
1

#H

∑

C∈H/∼

#Cf(C)g(C) = 〈f, g|H〉H .

Property 3. It holds that ψ∗(R(H)) ⊂ R(G).

Proof. We have R(G) =
⊕

S simpel Z · [S] ⊂ R(G) ⊗ C =
⊕

S C · [S] ∼=
⊕

χ∈X(G) C · χ. We have
already seen that

〈[S], [S′]〉 =

{
1 if [S] = [S′]
0 otherwise

.

If χ ∈ R(G)⊗ C, then
x ∈ R(G)⇔ ∀χ ∈ X(G) : 〈x, χ〉G ∈ Z, (12.1)

as we already know.
We have to prove that ψ∗(x) ∈ R(G) for all x ∈ R(H) with x(1) = 0. Let x any element of

R(H) with x(1) = 0 and let χ be any element of X(G). It is sufficient to show that 〈ψ∗(x), χ〉G ∈
Z.
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From Property 2 we get 〈ψ∗(x), χ〉G = 〈x, i∗χ〉H . Since χ is simple, χ ∈ R(G). Thus, i∗χ ∈
R(H) and i∗χ =

∑

ω∈X(H) nωω with nω ∈ Z. We have 〈x, i∗χ〉H =
∑

ω∈X(H) nω〈x, ω〉H ∈ Z,

because 〈x, ω〉 ∈ Z by (12.1). We have shown that 〈ψ∗(x), χ〉G ∈ Z for all x ∈ R(H) with
x(1) = 0.

The map ρ : R(H) → Z given by x 7→ x(1) is a ring homomorphism. We have proved
Property 2 only for elements in the kernel of ρ and we have seen that ψ∗(ker ρ) ⊂ R(G). The
function ρ maps 1 to 1. Thus, R(H) = (ker ρ) ⊕ Z · 1. Since ψ∗ also maps 1 to 1, we find that
ψ∗(R(H)) ⊂ R(G) and we are done.

Property 4. For every χ ∈ X(H) it holds that ψ∗χ ∈ X(G) and N acts trivially on the simple
C[G]-module belonging to ψ∗χ.

Proof. Let χ ∈ X(G). Then χ ∈ R(H) and from Property 3 we have ψ∗χ ∈ R(G). Let
ψ∗χ =

∑

ω∈X(G) nωω, with nω∈Z. We have to prove that one of the nω is equal to 1 and all the

others are equal to 0. We know that 〈ψ∗χ, ψ∗χ〉G =
∑

ω∈X(G) n
2
ω. It also follows from Property

1 that 〈ψ∗χ, ψ∗χ〉G = 〈χ, χ〉H = 1. Hence, all nω but one are equal to 0 and the last nω is equal
to either 1 or −1.

Now χψ = ψ∗χ = ±ω for an element ω ∈ X(G). Thus, χψ(1) = ±ω(1) ∈ ±(Z>0) and, on
the other hand, χψ(1) = χ(1) ∈ Z>0. Hence, the last nω is equal to 1.

Let M be the C[G]-module belonging to ψ∗χ and let τ ∈ N . Then the trace of τ on M is
equal to ψ∗χ(τ) = χ(ψ(τ)) = χ(1) = χ(ψ(1)), which is equal to the trace of 1 on M , that is
equal to dimC M . Hence, τ acts on M as 1.

Remark. We canR(G) write asR(G) =
∑

χ∈X(G) Z·χ. Now we getR(G)eff =
∑

χ∈X(G) Z≥0 ·

χ. From Property 4 it follows that ψ∗(R(H)eff) ⊂ R(G)eff .
By this remark there is a map

ψ∗ : {f.g. C[H ]-modules}/ ∼= −→ {f.g. C[G]-modules}/ ∼=

M 7−→ ψ∗M

with the following properties.

• N acts trivially on every ψ∗M . (IfM is simple, we know that by Property 4. For non-simple
M simpel it is sufficient to remember that M is a direct sum of simple modules.)

• As a C[H ]-module (this is possible because C[H ] ⊂ C[G] is a division ring) ψ∗M is isomor-
phic to M . (This is the same as i∗ψ∗ = id.)

We are going to prove that N is the kernel of the action of G on ψ∗C[H ]. We already
know that N ⊂ ker(G → AutC ψ

∗C[H ]). Moreover, ψ∗C[H ] ∼=C[H] C[H ], and H ∩ ker(G →
AutC ψ

∗C[H ]) = {1}. Thus, ker(G → AutC ψ
∗C[H ]) ⊂ N . Hence, N = ker(G → AutC ψ

∗C[H ])
and N ⊳G.



Chapter 13

Computing the character table

In this chapter we will compute, given a finite G (for instance by a multiplication table), the
character table [χ(σ)]χ∈X(G),[σ]∈G/∼.

We know the concept of eigenvalue from linear algebra. Let k be a field, V be a finite-
dimensional k-vector space, and ϕ : V → V be an endomorphism of V .

If λ is an element of k, the following facts are equivalent.

1. λ is an eigenvalue of ϕ.

2. There is v ∈ V , v 6= 0 such that ϕ(v) = λv.

3. Vλ = {v ∈ V : ϕ(v) = λv} 6= 0. (The eigenspace of ϕ with eigenvalue λ.)

4. f(λ) = 0, where f is the characteristic polynomial of ϕ: f = det(X · id− ϕ) ∈ k[X ].

5. V ′
λ = {v ∈ V : ∃m ≥ 1 : (λ · idV − ϕ)m(v) = 0} 6= 0. (The generalized eigenspace.)

Let f be the characteristic polynomial of ϕ. If k = k̄ (or, more generally, if f ∈ k[X ] is a
product of linear factors), then V =

⊕

λ∈k V
′
λ, and f =

∏

λ∈k(X − λ)
dim V ′

λ .

Definition 13.1 (Semisimple Endomorphism). The endomorphism ϕ is a semisimple endomor-
phism if V =

⊕

λ∈k Vλ, or, equivalently, if Vλ = V ′
λ for all λ ∈ k.

Now let k = C and V = Z(k[G]). We have already seen that V =
∏

C∈G/∼ k · (
∑

σ∈C σ). If

we define Ci :=
∑

σ∈C σ for i = 1, . . . , t, we get V = k · C1 ⊕ k · C2 ⊕ · · · ⊕ k · Ct.
Since V is a k-vector space and a commutative ring, for every α ∈ V there is a k-linear map

α : V → V given by x 7→ αx.
We have seen before that the isomorphism

Z(k[G])
∼
−→

∏

χ∈X(G)

k.

acts on Cj by

Cj 7−→

(

#Cj
χ(σj)

χ(1)

)

χ∈X(G).

Now we give an algorithm which given G computes the character table.

69
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1. Compute the conjugacy classes C1, . . . , Ct of G and #Ci.

2. Compute integer numbers nijk ≥ 0 with CiCj =
∑t

k=1 nijkCk.

3. Compute for i = 1, . . . , t the common eigenspaces of C1, . . . , Ci and the associated eigen-
values.

4. The common eigenspaces of C1, . . . , Ct are 1-dimensional. Call them V1, . . . , Vt and let λij

the eigenvalue of Ci on Vj . Now if Vj belongs to χj and σi ∈ Ci, then λij = #[σi]
χ
j(σi)

χ
j(1)

.

From the know formula

∑

χ∈X(G)

χ(1)χ(σ) =

{

#G if σ = 1

0 if σ 6= 1

we see that
1

#[σi]

t∑

j=1

χ
j(1)2λij =

{

#G if σi = 1

0 if σi 6= 1

and therefore
t∑

j=1

χ
j(1)2λij =

{

#G if σi = 1

0 if σi 6= 1.

Determine χj(1)2 from this linear system and define χj(σi) = χ
j(1)λij/#[σi].

Example. Let G = S3.

1. C1 = (1), C2 = (1 2 3) + (1 3 2), C3 = (1 2) + (1 3) + (2 3), #C1 = 1, #C2 = 2, #C3 = 3.

2. C1 = 1, C2
2 = 2C1 + C2, C

2
3 = 3C1 + 3C2, C2C3 = 2C3.

3. C1. Eigenspace k · C1 + k · C2 + k · C3 with eigenvalue 1.

C2. The multiplication by C2 in the basis C1, C2, C3 is given by the matrix





0 2 0
1 1 0
0 0 2



.

The characteristic polynomial of this matrix is (X(X − 1)− 2)(X − 2) = (X + 1)(X − 2)2.
The eigenspace of C2 with λ = −1 is k · (2C1 − C2) and the eigenspace with λ = 2 is
k · (C1 + C2)⊕ k · C3.

C3. C3(2C1 − C2) = 2C3 − 2C3 = 0, and therefore C3 has eigenvalue 0 in (2C1 − C2).
Furthermore, C3(C1+C2) = 3C3 and C3C3 = 3(C1+C2). Thus, the multiplication by C3 in

the basis (C1 +C2), C3 is given by the matrix

(
0 3
3 0

)

and the characteristic polynomial

is X2− 9 = (X − 3)(X + 3). The eigenspace of C3 with λ = 3 is k · (C1 +C2 +C3) and the
eigenspace with λ = −2 is k · (C1 + C2 − C3).

4. The eigenvalues of Ci on Vj are in the following table.

Vj\Ci C1 C2 C3

2(C1 − C2) 1 −1 0
C1 + C2 + C3 1 2 3
C1 + C2 − C3 1 2 −3
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Now we have to solve the system

χ
1(1)2(1 − 1 0) + χ

2(1)2(1 2 3) + χ
3(1)2(1 2 − 3) = (6 0 0).

We get χ1(1)2 = 4, χ2(1)2 = 1, and χ3(1)2 = 1. Thus, χ1(1) = 2, χ2(1) = 1, and χ3(1) = 1.

This gives the character table

χ
j(σi)

2 −1 0
1 1 1
1 1 −1.



Chapter 14

Induction and Brauer’s theorem

Let k be a field and let n ∈ Z≥0.

Definition 14.1 (Monomial matrix). An n × n matrix over k is a monomial matrix if it is
invertible and n(n− 1) entries are equal to 0.

The set Mon(n, k) of monomial n× n-matrices over k is a subgroup of GL(n, k).
We have the short exact sequence

1 −→ (k∗)n −→ Mon(n, k) −→ Sn −→ 1,

and the map Sn → Mon(n, k) which sends σ to the permutation matrix of σ gives a splitting.
We see that Mon(n, k) ∼= (k∗)n ⋊ Sn.

Now let k = C and let G be a finite group. Moreover, let M be a finitely generated k[G]-
module.

Definition 14.2 (Monomial). The module M is monomial if there is a basis b1, . . . , bn of M
such that

∀σ ∈ G ∀i ∈ {1, . . . , n} : ∃j ∈ {1, . . . , n}, a ∈ k∗ : σbi = abj

or, equivalently, if there exists an isomorphism M ∼=k k
n such that the image of G→ Autk(M) ∼=

Autk(k
n) ∼= GL(n, k) is contained in Mon(n, k).

Example. Zij G = D4 = 〈ρ, σ〉.
There are four 1-dimensional simple modules and every 1-dimensional module is monomial.

There is a 2-dimensional simple module. The image of ρ is

(
0 −1
1 0

)

and the one of σ is
(

1 0
0 −1

)

. Both are monomial matrices and therefore this simple module is also monomial.

Hence, every representation of D4 is monomial.

Definition 14.3 (Permutation module). A finitely generated k[G]-module is a permutation
module if it has a k-basis which is permuted by G.

Note that a permutation module of dimension greater than 1 has a submodule which is
spanned by the sum of the basis vectors.

Theorem 14.4 (Brauer’s theorem). Let G be a finite group and M be a finitely generated C[G]-
module. Then there are two monomial C[G]-modules M1 and M2 such that M ⊕M1

∼=C[G] M2.
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Corollary 14.5. Let G be a finite group and m be the exponent of G. Then every finitely
generated C[G]-module M can be defined over Q(ζm). That is, there exists an isomorphism
M ∼=C Cn such that the image of G→ AutC(M) ∼= GL(n,C) is contained in GL(n,Q(ζm)).

In Chapter 12 we had the following diagram.

{f.g. C[G2]-modules}/∼=C[G2] →֒ RC(G2) →֒ RC(G2)⊗Z C ∼= CG2/∼


yϕ

∗



yϕ

∗



yϕ

∗⊗id



y(ϕ/∼)∗

{f.g. C[G1]-modules}/∼=C[G1] →֒ RC(G1) →֒ RC(G1)⊗Z C ∼= CG1/∼.
We can also construct the map ϕ∗. Note that ϕ∗(M) = k[G2] ⊗k[G1] M is a k[G2]-module,

because k[G2] is a k[G2]-k[G1]-bimodule.
In the special case where G1 = H is a subgroup of G2 = G and ϕ = i is the inclusion map

H ⊂ G, we also call i∗ induction from H to G and we denote it by IndGH .
Now let G be a finite group, H ⊂ G be a subgroup and M be a k[H ]-module. How does

IndGHM = k[G]⊗k[H] M look like?
Write G =

∐

ρ∈P ρH . Then k[G] =
⊕

ρ∈P ρ·k[H ]. It follows that k[G]⊗k[H]M =
⊕

ρ∈P ρ·M .
If σ ∈ G, x ∈ M and ρ ∈ P , there are a ρ′ ∈ P and a τ ∈ H such that σρ = ρ′τ . From this we
see that σ(ρx) = ρ′(τx) ∈ ρ′ ·M .
Example. If M = k, then IndGHk is a permutation module with underlying vector space kG/H .

A finitely generated k[G]-moduleN is monomial if and only ifN is of the form
⊕r

i=1 IndGHi
(Mi),

with Hi ⊂ G a subgroup and Mi a 1-dimensional k[Hi]-module.
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